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Several multilayered physically-based plate theories are derived under different limiting assumptions on 
displacement, strain and stress fields, either in displacement-based or mixed Hu-Washizu and Helinger-
Reissner form, and assuming different layerwise functions. Their features are reminiscent to those of 
theories published in the literature, or are entirely new. The present study aims to evaluate how different 
forms of description of the transverse normal deformation and stress affect accuracy. At the same time, 
the purpose is also to see if a much broader degree of generalization of what characterizing currently 
available physically-based zig-zag theories can be achieved through a redefinition of coefficients obtained 
by imposing the fulfillment of physical constraints, namely interfacial stress compatibility and local 
equilibrium equations across the thickness through use of symbolic calculus tool. Besides calculating 
exactly quantities, this tool enables users to choose representation form and zig-zag functions as desired, 
keeping fixed the d.o.f. to five. Challenging benchmarks with strong layerwise effects are considered, for 
which an accurate description of the transverse normal deformation effect is important. They include 
distributed/localized step loading and different boundary conditions. Effects of constraint stresses at 
supports are accounted for. Numerical results show that whenever the whole set of physical constraints 
is enforced across the thickness to redefine coefficients, the choice of the representation form and of 
zig-zag functions is immaterial and more importantly, accurate results are obtained with few variables 
and a low expansion order of solutions. Otherwise results are sensitive to the choices made.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

Laminated and sandwich composites are key materials in many engineering fields, by virtue of their excellent specific strength and 
stiffness, fatigue and energy absorption properties, better resistance to corrosion and greater design flexibility. In particular, they allow to 
get higher speed, longer range, larger payloads, a reduction of pollution and better operating economy.

However, sophisticated theoretical and computational structural models are required to ward off any possible catastrophic failure 
or intolerable loss of performance in service of structures made of them, which typically exhibit three-dimensional stress fields and 
complex failure mechanisms. Unlike non-layered materials, their displacement field must be C◦-continuous (zig-zag effect) so to ensure 
the continuity of out-of-plane stresses and then equilibrium.

So far, many multi-layered plate theories have been proposed, which can be categorized into equivalent single-layer (ESL), discrete-layer 
(DL) and zig-zag (ZZ) theories (acronyms are explained in Table 1). A comprehensive review and extensive discussion are presented in 
the book by Reddy [1] and in the papers [2–13]. Theories further subdivide into displacement-based or mixed formulations because 
displacements, as strains and stress fields can be chosen separately from one another.

The merit of ZZ, is to strike the right balance between accuracy and cost saving, allowing designers’ demand of theories in a simple 
already accurate form to be met. They can be distinguished into physically-based/Di Sciuva’s like [14] (DZZ) or kinematic-based/Murakami’s 
like [15] (MZZ) zig-zag theories. A comprehensive discussion of MZZ, which today are the most used, along with extensive applications 
are given by Carrera [7–9], Carrera and coworkers [16,17], Demasi [10,11] and Rodrigues et al. [18]. They assume zig-zag functions a 
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Table 1
Acronyms, abbreviations and appellations of theories. New theories of this paper are indicated in bold.

Symbol Explanation Symbol Explanation

CUF Carrera’s unified formulation [7] MHRO Variant of MHR with an additional d.o.f. u(3)
α,β , u(4)

ς (sect. 3.1).

DL Discrete layer theories MHR4 Refined variant of MHR #1 u(3)
α,β , u(4)

ς (sect. 3.2, Ref. [24]).

DZZ Physically-based zig-zag theories MHR4± MHR4 with zig-zag function sign determined on a physical basis 
(sect. 3.2, Ref. [29]).

ESL Equivalent single layer theories MHWZZA Modified HWZZ theory u(3)
α,β , u(4)

ς (sect. 3.2, Ref. [24]).

FEA 3-D Mixed solid 3-D elements (Ref. [50]). MHWZZA4 Modified MHWZZA theory u(3)
α,β , u(4)

ς (sect. 3.2, Ref. [24]).

HLT Hierarchical theories [22], [23] MZZ Kinematic-based zig-zag theories
HR Hellinger-Reissner variational theorem RZT Refined zig-zag theory (Ref. [41]).

HRZZ Mixed HR theory with uniform transverse displacement u(3)
α,β , 

u(0)
ς sect. 3.3

ZZ Zig-zag theories

HRZZ4 Mixed HR theory with fourth-order transverse displacement 
u(3)

α,β , u(4)
ς sect. 3.3

ZZ_NA1 Not adaptive DZZ u(3)
α,β , u(4)

ς (sect. 2.4.1, Ref. [19]).

HW Hu-Washizu variational theorem ZZ_NA2 Variant of ZZ_NA1 with different representation across the 
thickness (sect. 2.4.1).

HWZZ HW zig-zag mixed theory u(3)
α,β , u(4)

ς (sect. 2.5, Ref. [24]). ZZA Zig-zag adaptive theory u(3)
α,β , u(4)

ς (sect. 2.4, Ref. [26]).

HWZZM Mixed Hu-Washizu zig-zag theory with Murakami’s like zig-zag 
functions, u(3)

α,β , u(4)
ς (sect. 2.6, Ref. [29]).

ZZA1 Modified ZZA theory #1 (sect. 2.4.1).

HWZZM(�) Variants of HWZZM, type � (sect. 2.6.1, Ref. [29]). ZZA2 Modified ZZA theory #2 (sect. 2.4.1).

MHR MZZ cubic-quartic mixed HR theory u(3)
α,β , u(4)

ς (sect. 3.1, 
Ref. [24]).

ZZA3 Modified ZZA theory #3 (sect. 2.4.1).

MHR± MHR with zig-zag function sign determined on a physical basis 
(sect. 3.1, Ref. [29]).

♠ ZZA, ZZA1, ZZA2, ZZA3, HWZZ, HWZZM, giving accurate 
coincident results reported in Tables and Figures.

� = A, B, B2, C, C2, 0 (variants of theory)

priori featuring a periodic change of the slope of displacements at interfaces, therefore don’t care of orientation angle, material properties 
and thickness of constituent layers. Their stress fields are assumed apart within the framework of Hellinger-Reissner variational theorem 
(HR), as a consequence C◦ formulations suitable for development of finite elements are easily obtainable. Carrera’s unified formulation 
(CUF) [7], which allows displacements to take arbitrary forms that can be chosen by the user as an input of the analysis, is able to get 
existing and arbitrary mixed, MZZ and ESL structural models as particularizations. DZZ incorporate layerwise contributions as the product 
of linear [14] or nonlinear [19] zig-zag functions and unknown zig-zag amplitudes, which are determined by enforcing the fulfillment
of stress continuity conditions at layer interfaces. In short, they enrich the coarse representation of ESL through layerwise contributions 
without increasing the number of unknowns. DZZ based on a global-local superposition of displacement fields proposed by Li and Liu 
[20] and refined over the years by Zhen and Wanji [21] have coefficients of local groups determined by enforcing displacement and stress 
constraints without including explicitly zig-zag functions.

Hierarchical theories (HLT) been developed within the framework of CUF to achieve greater numerical efficiency by Catapano et al. 
[22] and de Miguel et al. [23], which also do not explicitly contain zig-zag functions. In these theories, a hierarchical set of locally 
defined polynomials ensuring the C◦-continuous requirement is assumed. To mitigate the interfacial stress jumps, direct consequence of 
the omission of zig-zag functions, a high degree of expansion of variables is required, which turns out into a high number of unknowns.

Also DL suffer from an excessive number of unknowns, their variables being assumed for each individual constituent layer. Conse-
quently, they could overwhelm the computational capacity when structures of industrial interest are analyzed. ESL are computationally 
efficient, but since they disregard the zig-zag effect they cannot provide accurate stress predictions.

Examining the results of MZZ and DZZ available in the literature and of [24], it could be noticed that the former do not very accurately 
predict through-thickness displacement fields, although they use many d.o.f. for each displacement (15 in Brischetto et al. [25]), while they 
accurately predict stresses. On the contrary, DZZ developed as a generalization of ZZA theory [26], whose coefficients are redefined across 
the thickness through the enforcement of stress compatibility and equilibrium (hence their appellative adaptive), accurately predicts both 
fields with just five d.o.f. Recent studies by Gherlone [27] and Groh and Weaver [28], as well as those in [24] and [29] also show that MZZ 
are less accurate than DZZ with the same degree of representation, while Zhen and Wanji’s [30] show that most sophisticated MZZ are 
accurate. From all this, it appears that DZZ are more accurate than MZZ with a low expansion order, but as the expansion order increases, 
the latter become accurate anyway.

As DZZ can obtain the due accuracy with a low computational burden, it follows the utility of the studies that aim at increasing their 
degree of generality and flexibility of use. In this context it is also important their assessment for cases whose strong layerwise effect 
makes modeling demanding.

So far, power series expansion, hierarchic polynomials, Taylor’s series, trigonometric and exponential functions, a combination of both, 
radial basis functions (see [18,31–37]) and Hermite splines [38,39] have been used to represent variables across the thickness, in order to 
find the most efficient formulation. However, the authors in [29] have preliminarily shown that different theories lead to the same result 
if displacement field coefficients and zig-zag amplitudes are determined in exact form by enforcing the same whole set of constraint 
conditions via symbolic calculus. Indeed, symbolic calculus always determines the same exact result compensating for the mutation 
of functions. On the contrary, theories with only a partial fulfillment of constraints highlights a strong sensitivity of results from the 
assumptions made like for studies [18] and [31–39]. It is worth remembering that in this form symbolic calculus turns out to be an 
automatic tool enabling users to freely choose the type of representation and the zig-zag functions as desired.

Mixed formulations represent a viable option to keep kinematics simple and simultaneously obtain accurate predictions without having 
to incorporate a piecewise transverse displacement to account for the transverse normal deformability effect, as shown e.g., by the HW 
theory by Zhen and Wanji [30], HR theories by Kim and Cho [40], Tessler et al. [41], Barut et al. [42] and Iurlaro et al. [43].
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However, given the importance of the transverse normal deformability effect (see, e.g. Icardi [19], Icardi and Sola [26], Shariyat [44], 
Carrera and Ciuffreda [45], Rekatsinas et al. [46] and Mattei and Bardella [47]), and the only partial accuracy of mixed models with 
simplified kinematics, as evidenced in [24] and [29], it seems that such mixed models can be used only for analysis of cases wherein 
the transverse normal deformation can just be described approximately. Such cases comprise the prediction of static response quantities 
under global distributed loading, uniform plate geometry and a slight variation of the elastic properties of layers. On the contrary, studies 
of high-frequency vibrations, transient response analyzes, localized loading, geometric and non-uniformity of properties require a very 
accurate description of the transverse normal deformability.

In light of the above considerations, boundary conditions, loadings and lay-ups giving rise to stronger layerwise effects from those used 
in the past are required to thoroughly test theories. Clamped edges are particularly interesting [17,41] since kinematic variables should 
vanish without incorrectly resulting into a vanishing transverse shear force resultant, as erroneously predicted by traditional plate models.

It becomes important from the previous discussion to clarify whether adaptive DZZ, like those of [24] and [29], can really provide an 
equivalent degree of generality as MZZ, hierarchical axiomatic/asymptotic theories and CUF under strong layerwise effects. It also becomes 
important to verify whether the potential advantage of DZZ of requiring a low expansion order of variables and few d.o.f. for being accurate 
occurs in practice. Moreover, it is important to check on a wide range of applications if indeed DZZ are adaptable case by case, given that 
the choice of their zig-zag and representation functions can be arbitrary, as preliminarily observed for the benchmarks considered in [29]
and [48].

In light of the previous discussion, the intended aim of this paper is to thoroughly show by numerical assessments that adaptive 
theories [24,29,48] and new ones developed in this paper as their generalizations or mutations, (i) can allow an arbitrary choice of the 
displacement field and of zig-zag functions without the result changing, (ii) whenever physical constraints are satisfied in a point-wise 
sense across the thickness through the redefinition of coefficients.

In order to prove this, zig-zag functions that are arbitrarily chosen in a different way one from the other and representation functions 
that differ for each displacement and from region to region across the thickness are considered. Also variants wherein zig-zag functions 
are omitted, their role being played by coefficients redefined across the thickness, are considered. Lower-order theories, whose features are 
reminiscent to ones published in the literature, are considered for sake of comparison. For these and for the theories that only partially 
enforce the set of constraints the aim is to prove that the solution loses accuracy and becomes strongly dependent on the choices made.

A further purpose of this study is also to demonstrate that adaptive theories can reach a degree of generality and flexibility of use 
similar to that of axiomatic/asymptotic theories and CUF, requiring a much lower number of unknowns to get the same accuracy even for 
challenging cases with strong layerwise effects.

Challenging benchmarks retaken from the literature or new are used to test the accuracy of theories (Table 2 provides a quick reference 
pattern of all cases considered in the paper). Whenever available, exact solutions are considered as reference solutions, otherwise FEA 3-D 
is used.

2. Laminated plate theories of this paper

Hereafter the theoretical framework of structural models is discussed starting from basic notations and assumptions, then how closed-
form solutions are obtained and the specific features of each theory are examined. However, to limit the length of the paper, just 
displacements, strain and stress fields are discussed into details since governing equations can be derived in a in a straightforward way 
from variational theorems.

2.1. Notations

The study is restricted to laminated plates subject to small deformations. Cell-scale effects of honeycomb core being disregarded, 
sandwiches are described as multi-layered structures. As usual for this type of study, constituent layers are assumed to have a uniform 
thickness hk , linear elastic orthotropic properties and are perfectly bonded to each other and bonding interlayer film is disregarded.

A rectangular, right-handed Cartesian coordinate reference system (α, β, ς ) is assumed as reference frame on the middle reference 
plane �, (α, β) being assumed as the in-plane coordinates and therefore ς as the thickness coordinate (ς ∈ [−h/2; h/2], h being the 
overall thickness). The position of the upper and lower surfaces of the generic layer k are denoted by (k)ς+ and (k)ς− , respectively, while 
ςk represents the coordinate of layer interfaces. Lα and Lβ symbolize the plate side-length in the α- and β-directions. Subscripts k and 
superscripts k indicate that a quantity belongs to the layer k, while u and l mark the properties at upper and lower faces of the laminate. 
Elastic in-plane and transverse displacement components are indicated as uα and uς , while in-plane and out-of-plane strain and stress 
components are indicated respectively as εi j , εας , εςς and σi j , σας , σςς (γαβ = 2εαβ).

To distinguish their origin, strains are further specified as εu
i j = 1/2(ui, j + u j,i) and εσ

i j = (Eijkl)
−1σkl , respectively if they come from 

kinematic [.]u or stress-strain [.]σ relations σε
i j = Eijklεkl , being Cijkl = (Eijkl)

−1.
Einstein summation convention is used throughout the paper and a comma is used to indicate spatial derivatives, e.g. (.),α =

∂(.)/∂α ,(.),ς = ∂(.)/∂ς . As usual, the prismatic plate volume V is assumed to be bounded by a surface S that is split into a surface 
St on which surface tractions are prescribed and a surface Su on which surface displacements are prescribed. Body forces bi on V , 
prescribed surface tractions t̃i on St and prescribed displacements ũi on Su are assumed to act.

2.2. Brief reminder of variational theorems used in this study

Theories wherein displacements, strains and stresses are assumed as primary variables are developed using a generalized version H W g

of Hu-Washizu canonical functional whose primary displacement boundary condition link is weakened as 
∫

Su
(ui − ũi)n j∂σi jdS = 0 (i, j

coincide in turn with α, β or
ς ) and which generates the following variational statement:
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Table 2
Data of cases.

Case Lay-up Layer thickness Material Sketch Loading Lα/h Lβ/Lx

a(*§) [0/90/0/0/0/90]S [((0.0333h)3/0.35h)2/
(0.0333h)3]

[(p3/q)2/p3] p0(α) = p0
u sin(πα/Lα)

if 0 ≤ α ≤ Lα
5 –

b(*§) [90/0] [0.5h/0.5h] [r2]
p0(α) = p0

u sin(πα/Lα)

if 0 ≤ α ≤ Lα
4 -

c(*§) [0]11 [0.01h/0.025h/0.015h/
0.02h/0.03h/0.4h]S

[s1/s2/s3/s1/s3/s4]S
p0(α) = p0

u sin(πα/Lα)

if 0 ≤ α ≤ Lα
4 -

d(*§) [0/ − 90/0/ − 90] [0.25h]4 [p]4
p0(α) = p0

u sin(πα/Lα)

if 0 ≤ α ≤ Lα
4 -

e(*�§) [0/0/0] [0.1h/0.7h/0.2h] [c1/c1/c1]

p0(α,β)

= p0
u sin(πα/Lα) sin(πβ/Lβ )

if 0 ≤ α ≤ Lα and 0 ≤ β ≤ Lβ

4 3

f(*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] p0(α) = p0
u

if 0 ≤ α ≤ Lα

5.714 –

g(*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 20 –

h(*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n]
p0(α) = p0

u
if 0 ≤ α ≤ Lα

5.714 –

support at α = 0.9Lα

i (§) [0/0/0] [0.2h/0.7h/0.1h] [c2/c2/c2] p0(α,β)

= p0
u sin(πα/Lα) sin(πβ/Lβ )

if 0 ≤ α ≤ Lα and 0 ≤ β ≤ Lβ

4 3

j (*�§) [0/0/0/0] [0.05h/0.15h/0.70h/
0.10h]

[p/mc/mc/p] 4 1

k (*§) [0/0/0] [0.05h/0.9h/0.05h] [i1/i2/i1]
p0(α,β) = p0

u

if

{
Lα/4 ≤ α ≤ 3Lα/4
Lβ/4 ≤ β ≤ 3Lβ/4

5 1

Whether Murakami’s function assumption is not satisfied by uα (∗), uβ (�) and uς (§)

∂�
g
H W =

∫
V

[(
εu

i j − εi j
)
∂σi j + (

σ e
i j − σi j

)
∂εi j + σi j∂ε

u
i j − bi∂ui

]
dv −

∫
St

t̃i∂uids −
∫
Su

[
(ui − ũi)n j∂σi j + σi jn j∂ui

]
ds = 0 (1)

The components of the external unit normal to the volume bounding surface are represented by n j , bi are the components of body forces 
and terms 

∫
V (εu

i j − εi j)∂σi jdv , 
∫

V (σ e
i j − σi j)∂εi jdv constitute the compatibility relations that ensure the consistency of assumed strain and 

stress fields with their counterparts obtained from stress-strain and strain-displacement relations.
Theories assuming displacement and stress fields as primary variables are developed using Hellinger-Reissner HR canonical functional:

∂�HR =
∫
V

[
σi j∂ε

u
i j + (

γ u
i3 − γ σ

i3

)
∂σi3 + (

εu
33 − ε̂σ

33

)
∂σ33 − bi∂ui

]
dv −

∫
St

t̃i∂uids −
∫
Su

[
(ui − ũi)n j∂σi j + σi jn j∂ui

]
ds = 0 (2)

The following definitions apply: i, j = 1, 2 ≡ x, y; 3 ≡ z; γi j(i3)(33) = 2εi j(i3)(33); ε̂σ
33 = 1/C3333(σ33 − C33i jε

u
i j).

Theories in displacement-based form are derived using the Total Potential Energy functional.
The middle-plane displacement components u0, v0, w0 in the α, β, ς directions and the rotations of the normal θα = 
0

α(α, β) −
w0(α, β),α , θβ = 
0

β(α, β) − w0(α, β),β are assumed as the only functional degrees of freedom.

2.3. Trial functions

Closed form solutions are obtained within the framework of Rayleigh-Ritz method, in conjunction with Lagrange multipliers method. 
Accordingly, d.o.f. are expressed as a truncated series expansion of unknown amplitudes Ai

� and trial functions �i(α, β) that individually 
satisfy the prescribed boundary conditions:

� =
m�∑

Ai
��i(α,β) (3)
i=1
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Table 3
Normalization of displacements and stresses, expansion order and trial functions.

Case
Meshing [αa · βb · ςh](+)

Normalization Expansion Trial function

a
[16 · 2 · 60] uα = E2uα(0,ς)

hp0 uς = 100E2h3uς (
Lα
2 ,ς)

L4
α p0 σαα = σαα(

Lα
2 ,ς)

p0 σας = σας (0,ς)

p0 1
u0(α) =

M∑
m=1

Am cos(
mπα

Lα
);

w0(α) =
M∑

m=1

Cm sin(
mπα

Lα
);


0
α(α) =

M∑
m=1

Dm cos(
mπα

Lα
)

b
[16 · 2 · 60] uα = E2uα(0,ς)

hp0 uς = 100E2h3uς (
Lα
2 ,ς)

L4
α p0 σαα = σαα(

Lα
2 ,ς)

p0 σας = σας (0,ς)

p0 σςς

= σςς (
Lα
2 ,ς)

p0

1

c
[16 · 2 · 60] uα = uα(Lα ,ς)

hp0 uς = uς (Lα ,ς)

hp0 σαα = σαα(Lα ,ς)

p0(Lα/h)2 σας = σας (Lα ,ς)

P 0 σςς = σςς (Lα ,ς)

p0 1

d
[16 · 2 · 60] uα = E2uα(0,ς)

hp0 uς = uς (
Lα
2 ,ς)

hp0 σαα = σαα(
Lα
2 ,ς)

p0 σας = σας (0,ς)

p0 σςς = σςς (
Lα
2 ,ς)

p0 1

e
[10 · 10 · 28]

uα = uα(0,
Lβ

2 , ς)E1M AT bch2

p0 L3
α

uβ = uβ ( Lα
2 ,0, ς)

hp0
uς = uς ( Lα

2 ,
Lβ

2 , ς)

hp0

σαα = σαα( Lα
2 ,

Lβ

2 , ς)

p0(Lα/h)2
σββ = σββ( Lα

2 ,
Lβ

2 , ς)

p0(Lα/h)2

σαβ = σαβ(0,0, ς)

p0(Lα/h)2
σας = σας (0,

Lβ

2 , ς)h

p0 Lα
σβς = σβς ( Lα

2 ,0, ς)

p0

σςς = σςς ( Lα
2 ,

Lβ

2 , ς)

p0

1

u0(α,β) =
M∑

m=1

N∑
n=1

Amn cos(
mπ

Lα
α) sin(

nπ

Lβ

β);

v0(α,β) =
M∑

m=1

N∑
n=1

Bmn sin(
mπ

Lα
α) cos(

nπ

Lβ

β);

w0(α,β) =
M∑

m=1

N∑
n=1

Cmn sin(
mπ

Lα
α) sin(

nπ

Lβ

β);


0
α(α,β) =

M∑
m=1

N∑
n=1

Dmn cos(
mπ

Lα
α) sin(

nπ

Lβ

β);


0
β (α,β) =

M∑
m=1

N∑
n=1

Emn sin(
mπ

Lα
α) cos(

nπ

Lβ

β);

i
[10 · 10 · 28] uα = uα(0,

Lβ
2 ,ς)

hp0 uβ = uβ (
Lα
2 ,0,ς)

hp0 uς = uς (
Lα
2 ,

Lβ
2 ,ς)

hp0 σαα = σαα(
Lα
2 ,

Lβ
2 ,ς)

p0(Lα/h)2 σββ

= σββ (
Lα
2 ,

Lβ
2 ,ς)

p0(Lα/h)2

1

j
[10 · 10 · 28] σαβ = σαβ (0,0,ς)

p0(Lα/h)2 σας = σας (0,
Lβ
2 ,ς)

p0 σβς = σβς ( Lα
2 ,0,ς)

p0 σςς = σςς ( Lα
2 ,

Lβ
2 ,ς)

p0 1

k
[10 · 10 · 28]

uα = uα(0,
Lβ
2 ,ς)

hp0 uβ = uβ (
Lα
2 ,0,ς)

hp0 uς = uς (
Lα
2 ,

Lβ
2 ,ς)

hp0 σαα = σαα(
Lα
2 ,

Lβ
2 ,ς)

p0(Lα/h)2 σββ

= σββ (
Lα
2 ,

Lβ
2 ,ς)

p0(Lα/h)2

σαβ = σαβ (0,0,ς)

p0(Lα/h)2 σας = σας (0,
Lβ
2 ,ς)

p0 σβς = σβς (
Lα
2 ,0,ς)

p0 σςς = σςς (
Lα
2 ,

Lβ
2 ,ς)

p0

20

f
[20 · 2 · 60] uα = uα(Lα ,ς)

hp0 uς = uς (Lα ,ς)

hp0 σαα = σαα(Lα ,ς)

p0(Lα/h)2 σας = Aσας (Lα ,ς)

P 0 Lα
σςς = σςς (Lα ,ς)

p0 9 u0(α) = ∑I
i=1 Ai(

α
Lα

)i ;

g
[20 · 2 · 60] uα = uα(Lα ,ς)

hp0 uς = uς (Lα ,ς)

hp0 σαα = σαα(Lα ,ς)

p0(Lα/h)2 σας = Aσας (Lα ,ς)

P 0 Lα
σςς = σςς (Lα ,ς)

p0 9 w0(α) = ∑I
i=1 Ci(

α
Lα

)i ;

h
[20 · 2 · 60] uα = uα(0.89Lα,ς)

hp0
uς = uς (0.89Lα,ς)

hp0
σαα = σαα(0.89Lα,ς)

p0(Lα/h)2

σας = σας (0.89Lα,ς)

p0
σςς = σςς (0.89Lα,ς)

p0

9 
0
α(α) = ∑I

i=1 Di(
α
Lα

)i

Cases with the same trial functions are listed together. (+)A uniform mesh is used; αa and βb represent the number of elements in α and β directions, respectively, ςh is 
the number of elements across the thickness;

where � symbolizes in turns u0, v0, w0, 
0
α , 
0

β . The trial functions are explicitly defined in Table 3 for each specific case along with the 
expansion order and normalizations used. As a consequence, an algebraic system is obtained, whose solution provides the numerical value 
of each amplitude, from which displacement, strain and stress fields can be constructed.

The same boundary conditions and the same representation are shared by all theories, in order to compare them under the same 
conditions. In details, at the clamped edge of cantilever beams, hereafter assumed at α = 0 by way of example, the following conditions 
are enforced

u0(0,0) = 0; w0(0,0) = 0; w0(0,0),α = 0; 
0
α(0,0) = 0 (4)

In order to simulate that (4) holds identically across the thickness, the following further conditions are enforced:

uα(0, ς),ς = 0; uς (0, ς),ς = 0; uς (0, ς),ας = 0 (5)

Using Lagrange multipliers method, it is further enforced

h/2∫
−h/2

σας (0, ς)dς = T (6)

to ensure that the transverse shear stress resultant force equals the constraint force, while at the free edge α = L (L is the beam length) 
this resultant force is enforced to vanish

h/2∫
−h/2

σας (L, ς)dς = 0 (7)

No conditions are enforced on bending moments, but if necessary they could be coerced choosing a sufficient expansion order in (3).
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At the clamped edge of propped-cantilever beams, the previous boundary conditions still hold, while at α = L the following support 
condition is enforced at the lower face ς = −h/2

w0(L,−h/2) = 0 (8)

while condition (7) is reformulated as:

h/2∫
−h/2

σας (L, ς)dς = T L (9)

Instead, at simply-supported edges, the following boundary conditions are enforced

w0(0, β) = 0; w0(Lα,β) = 0; w0(0, β),αα = 0; w0(Lα,β),αα = 0

w0(α,0) = 0; w0(α, Lβ) = 0; w0(α,0),ββ = 0; w0(α, Lβ),ββ = 0 (10)

on the reference mid-plane of the plate. With appropriate simplifications, corresponding ones for simply-supported beams are obtained.
As specified below, symbolic calculus is used for generating governing equations. An advantage offered by this technique is that loading 

does not require to be expressed as a series expansion like variables (3), just its mathematical formula being used, so a computational 
advantage is achieved irrespective it is continuous, discontinuous, or locally applied.

2.4. The ZZA displacement-based theory

Hereafter the theoretical framework of ZZA [26] is briefly expounded, being the basis for theories developed and assessed in this paper. 
The through-thickness displacement field is postulated as:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
F u
α(α,β,ς)

]
i

+
[ ni∑

k=1

�k
α(α,β)(ς − ςk)Hk(ς) +

n	∑
j=1

αC j
u(α,β)H j(ς)

]
c

uς (α,β,ς) = [
w0(α,β)

]
0 + [

F ζ (α,β,ς)
]

i +
[ ni∑

k=1

�k(α,β)(ς − ςk)Hk(ς)

+
ni∑

k=1

�k(α,β)(ς − ςk)
2 Hk(ς) +

n	∑
j=1

C j
ς (α,β)H j(ς)

]
c

(11)

Three kinds of contributions are incorporated, namely lower-, and higher-order ones, i.e. [...]0, [...]i respectively, and layerwise functions 
[...]c . Contribution [...]0, which is linear in uα and uniform across the thickness in uς , contains the only five functional degrees of freedom.

Functions 
[

F u
α

]
i , [F ς ]i aren’t just depending on ς because apexes and subscript u

α , ς represent the functional dependence on the d.o.f. 
that themselves are function of in-plane coordinates. Such functions are expressed as a series expansion of functions of ς (assumed as 
desired) and unknown coefficients, as described immediately after.

Any combination of independent functions could be assumed, however to include theory [19] as a particular case of ZZA, the following 
power series expansion is chosen:[

F u
α(α,β,ς)

]
i = [

C i
α(α,β)ς2 + Di

α(α,β)ς3 + (
Oς4...

)]
i = [

3(.)̃α
]

i + [(
Oς4...

)]
i[

F ζ (α,β,ς)
]

i = [
bi(α,β)ς + ci(α,β)ς2 + di(α,β)ς3 + ei(α,β)ς4 + (

Oς5...
)]

i = [
4(.)̃ς

]
i + [(

Oς5...
)]

i (12)

Higher-order contributions 
[
(Oς4...)

]
i , 

[
(Oς5...)

]
i are characteristic of ZZA, while 

[
3(.)̃α

]
i
, 
[

4(.)̃ς

]
i

are the same as in the previous model 
[19].

The contributions by (12) are indicated as U i
α , U i

ς and are rearranged in the following way:

U i
α(α,β,ς) = [

Aα2ς
2 + Aα3ς

3] + Aα4ς
4 + · · · + Aαnς

n

U i
ζ (α,β,ς) = [

Aς1ς + Aς2ς
2 + Aς3ς

3 + Aς4ς
4] + Aς5ς

5 + · · · + Aςnς
n (13)

in order to obtain exact expressions of coefficients via symbolic calculus. Ones under square brackets are determined by enforcing the 
fulfillment of boundary conditions

σας = σςς,ς = 0; σςς = p0
(±) (14)

Here p0
(±) represents the distributed transverse loading acting on upper p0

(+) and lower p0
(−) faces.

Of course, also non-homogeneous conditions σας ; σβς 
= 0 could be enforced without any additional difficulty. The expressions of 
remaining contributions of (13) outside square brackets are obtained by enforcing the fulfillment of local equilibrium equations

σαβ,β + σας,ς = bα; σας,α + σςς,ς = bς (15)
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at selected points across the thickness (where appropriate, only a partial set). The in-plane position where (15) are computed can be 
chosen suitably for each case.

Higher-order contributions (13) enable a variable-kinematics representation keeping the overall number of d.o.f. fixed to five, irre-
spective of the number of constituent or computational layers. A single computational layer proved to be effective in the numerical 
applications, as it already supplies a suitable number of equilibrium points.

The expressions of zig-zag amplitudes �k
α , �k and �k included into contributions [...]c are determined by enforcing the stress com-

patibility conditions

σας

(
(k)ς+) = σας

(
(k)ς−); σςς

(
(k)ς+) = σςς

(
(k)ς−); σςς,ς

(
(k)ς+) = σςς,ς

(
(k)ς−)

(16)

at physical and mathematical layer interfaces, which directly follow from (15). �k
α enable the continuity of transverse shears, while �k , 

�k enable the continuity of the transverse normal stress and of its gradient. All together provide the right slope changes of displacements 
at the interfaces of layers with different material properties and/or orientation. Note that (ς −ςk)Hk in (11) is Di Sciuva’s zig-zag function 
[14] while (ς − ςk)

2 Hk is Icardi’s parabolic zig-zag function [19], Hk being the Heaviside unit step function (Hk = 0 for ς < ςk , while Hk
= 1 for ς ≥ ςk). The enforcement of the stress compatibility conditions (16) yields to a system of algebraic equations at each interface 
that is solved using symbolic calculus. In this way, closed form expressions of zig-zag amplitudes are obtained once and for all in terms of 
elastic properties of layers and of d.o.f. derivatives. The technique of construction of structural model via symbolic calculus is described in 
Appendix A. If just material properties and/or the orientation of layers change, not their number, symbolic expressions remain the same 
and therefore need not be recalculated.

Layerwise contributions αC j
u and C j

ς restore the continuity of displacements at physical or mathematical layer interfaces:

uα

(
(k)ς+) = uα

(
(k)ς−); uς

(
(k)ς+) = uς

(
(k)ς−)

(17)

Since the expressions of the initially unknown coefficients appearing in (11) are all redefined across the thickness, as outlined above, 
ZZA and the theories with this same characteristic considered hereafter are named “adaptive” theories, as they can adapt to the variation 
of solutions across the thickness.

In conclusion, it should be noted that SEUPT technique [49] may be used to obtain a C◦ formulation of the ZZA and of the following 
theories suitable for development of finite elements.

2.4.1. New theories derived from ZZA
New displacement-based theories that derive from ZZA are developed hereafter with the purpose to investigate the effects of the choice 

of representation and zig-zag functions on accuracy. The first theory, here referred as ZZA1, postulates the following displacement field:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
C i

α(α,β)ς2 + Di
α(α,β)ς3 + �i

α(α,β)ς +α C i
u(α,β)

]
i+c

uς (α,β,ς) = [
w0(α,β)

]
0 + [

bi(α,β)ς + ci(α,β)ς2 + di(α,β)ς3 + ei(α,β)ς4]
i

+
[ ni∑

k=1

�k(α,β)(ς − ςk)Hk(ς) +
ni∑

k=1

�k(α,β)(ς − ςk)
2 Hk(ς) +

n	∑
j=1

C j
ς (α,β)H j(ς)

]
c

(18)

The transverse displacement is the same of ZZA, while zig-zag functions of in-plane displacements are omitted because coefficients 
�i

α(α, β) and αC i
u(α, β), can be determined through the enforcement of (16) to (17). On the other hand, C i

α(α, β) and Di
α(α, β) are 

calculated by imposing (14) and (15), so, the full set of physical constraints is enforced.
The purpose of this study is to demonstrate that results that are indistinguishable from those of ZZA can be obtained, thus proving 

that the choice of zig-zag functions is immaterial whenever the whole set of constraints (14) to (17) is enforced and exact relations are 
computed via symbolic calculus.

To corroborate the previous conclusions, another new theory, called ZZA2, is developed from ZZA as:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
C i

α(α,β)ς2 + Di
α(α,β)ς3]

i

+
[ ni∑

k=1

�k
α(α,β)(ς − ςk)Hk(ς) +

n	∑
j=1

αC j
u(α,β)H j(ς)

]
c

uς (α,β,ς) = [
w0(α,β)

]
0 + [

bi(α,β)ς + ci(α,β)ς2 + di(α,β)ς3 + ei(α,β)ς4 + C i
ς (α,β)

]
i+c (19)

In-plane displacements are the same as ZZA, while zig-zag contributions are omitted within the transverse displacement because their 
role is played by redefining coefficients bi(α, β) and ci(α, β) across the thickness through the enforcement of (16) (for layers with i > 1). 
C j

ς (α, β) are calculated by imposing (17), while the remaining coefficients are determined by enforcing (14) and (15). So (19) can be 
viewed as the dual form of (18), due to the exchange of displacements that do not contain zig-zag contributions.

Numerical applications will prove that also (19) gives results coincident with those of ZZA, although having different piecewise contri-
butions, so again it will be demonstrated that the choice of zig-zag functions is immaterial whenever the whole set of constraints (14) to 
(17) is enforced.

A further theory called ZZA3 is developed as:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
C i

α(α,β) cos(ς/h) + Di
α(α,β) sin(ς/h)

]
i

+
[ ni∑

�k
α(α,β)(ς − ςk)Hk(ς) +

n	∑
αC j

u(α,β)H j(ς)

]

k=1 j=1 c
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uς (α,β,ς) = [
w0(α,β)

]
0 + [

bi(α,β)(ς/h) + ci(α,β)e(ς/h) + di(α,β) cos(ς/h) + ei(α,β) sin(ς/h)
]

i

+
[ ni∑

k=1

�k(α,β)(ς − ςk)Hk(ς) +
ni∑

k=1

�k(α,β)(ς − ςk)
2 Hk(ς) +

n	∑
j=1

C j
ς (α,β)H j(ς)

]
c

(20)

which derives from (11) through a different choice of the representation functions across the thickness. Such functions are chosen as 
a mixture of trigonometric and exponential functions randomly selected, since studies [18] and [31–39] have highlighted this choice 
can considerably affect accuracy. On the contrary, results by [29] and [48] indicate that this choice is immaterial if exact expressions 
of coefficients are obtained via symbolic calculus and the full set of constraints (14) to (17) is enforced. This will also be confirmed by 
the numerical results of (20), therefore that the choice of the representation functions is also immaterial. On the contrary, the results of 
theories that only partially satisfy (14) to (17) show a strong sensitivity of results accuracy, as in [18] and [31–39].

In order to corroborate this, two more theories are considered in the numerical illustrations. The first one, which is retaken from [19]
and is called ZZ_NA1, has the following displacement field:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
Cα(α,β)ς2 + Dα(α,β)ς3]

i +
[ ni∑

k=1

�k
α(α,β)(ς − ςk)Hk(ς)

]
c

uς (α,β,ς) = [
w0(α,β)

]
0 + [

b(α,β)ς + c(α,β)ς2 + d(α,β)ς3 + e(α,β)ς4]
i

+
[ ni∑

k=1

�k(α,β)(ς − ςk)Hk(ς) +
ni∑

k=1

�k(α,β)(ς − ςk)
2 Hk(ς)

]
c

(21)

Differently to previous theories, higher-order coefficients within [...]i are not recomputed across the thickness, but zig-zag amplitudes 
are still recomputed by imposing (16). So, differently to ZZA and ZZA1 to ZZA3 not all terms are redefined across the thickness. For this 
reason, (21) is only capable of partially satisfying (14) to (17), consequently its results are inaccurate unless many computational layers 
are used.

Another theory, called ZZ_NA2 is proposed that considers a further different kind of representation across the thickness as:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
Cα(α,β) cos(ς/h) + Dα(α,β) sin(ς/h)

]
i

+
[ ni∑

k=1

�k
α(α,β)(ς − ςk)Hk(ς)

]
c

uς (α,β,ς) = [
w0(α,β)

]
0 + [

b(α,β)(ς/h) + c(α,β)e(ς/h) + d(α,β) cos(ς/h) + e(α,β) sin(ς/h)
]

i

+
[ ni∑

k=1

�k(α,β)(ς − ςk)Hk(ς) +
ni∑

k=1

�k(α,β)(ς − ςk)
2 Hk(ς)

]
c

(22)

Like ZZ_NA1, higher-order coefficients are not redefined for each layer, while zig-zag amplitudes are still recomputed by imposing the 
stress compatibility conditions (16). Because of this, ZZ_NA1 and ZZ_NA2 only partially satisfy the constraints. The results will show that 
ZZ_NA1 is more accurate than ZZ_NA2. In subsequent sections, authors’ previously developed theories and used for comparison in the 
numerical applications are briefly reviewed.

2.5. HWZZ mixed theory

Displacements of HWZZ [24] derive from those of ZZA neglecting the contributions of �k , which brings usually smaller contributions 
than �k

α , �k , which however are not negligible from the standpoint of the slope change at interfaces. Higher-order and adaptive contri-
butions Aα4ς

4 + · · · + Aαnς
n , Aς5ς

5 + · · · + Aςnς
n are also neglected from displacement fields and no decomposition into mathematical 

layers is allowed, i.e. contributions by αC j
u , C j

ς are omitted, so a single-layer zig-zag representation is adopted for displacements.
Out-of-plane strains are constructed assuming the representation (11) by ZZA, while in-plane strains are derived from kinematics [24]. 

Membrane stresses σαα , σββ , σαβ are obtained in a straightforward way from stress-strain relations. Expressions of out-of-plane stresses 
are obtained from expressions of membrane stresses by integrating local equilibrium equations. In this way, stress jumps resulting from 
omission of contributions by �k are recovered and it is prevented that displacement and stress fields fit their counterparts from kinematic 
assumptions, yielding to no improvements.

2.6. HWZZM adaptive theory with modified Murakami’s zig-zag functions

This theory, retaken from [29], is a HW mixed theory where [...]0 and [...]i are the same as ZZA (11), but different layerwise functions 
[...]c are assumed. Layewise contributions to in-plane displacements and the first contribution of the transverse displacement are the 
same of Murakami’s based theories except that a multiplier coefficient is applied constituting the zig-zag amplitude, whose expression 
is determined by enforcing the compatibility of out-of-plane shear and normal stresses at material layer interfaces. So, differently to 
Murakami’s based models in the literature, layerwise contributions, [...]c have amplitudes no longer assumed a priori and no longer 
uniform across the thickness. An additional contribution is incorporated in the transverse displacement, which involves second order 
powers of ς , whose amplitude is determined by enforcing the continuity of the transverse normal stress gradient. Membrane stresses are 
obtained from stress-strain relations and used to compute out-of-plane master stresses by integrating local equilibrium equations.
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Table 4
Normalized zig-zag amplitudes of theories of section 2.6.1 (normalization factor (Lα/h) p0).

Zig-zag amplitudes of theories HWZZM(�)

Case HWZZMA1 HWZZMB1 HWZZMC1 HWZZMB2u HWZZMC2u HWZZM01+

d Auα
k = 0.8921 · 10−3

A
uς

k = 0.01269 · 10−3

B
uς

k = −0.06582 · 10−3

Auα
k = §

A
uς

k = 0.01269 · 10−3

B
uς

k = −0.06582 · 10−3

Auα
k = §

A
uς

k = §

B
uς

k = −0.06582 · 10−3

Auα
k = §

A
uς

k = 0.20032 · 10−3

B
uς

k = −0.31043 · 10−3

Auα
k = §

A
uς

k = §

B
uς

k = −0.31043 · 10−3

Auα
k = §

A
uς

k = 0.01269 · 10−3

B
uς

k = 0

e Auα
k = 0.03639 · 10−7

A
uβ

k = 0.01212 · 10−7

A
uς

k = 0.12099 · 10−7

B
uς

k = 0.00463 · 10−7

Auα
k = §

A
uβ

k = §

A
uς

k = 0.12099 · 10−7

B
uς

k = 0.00463 · 10−7

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = 0.00463 · 10−7

Auα
k = §

A
uβ

k = §

A
uς

k = 0.00470 · 10−7

B
uς

k = −0.00285 · 10−7

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = −0.00285 · 10−7

Auα
k = §

A
uβ

k = §

A
uς

k = 0.12099 · 10−7

B
uς

k = 0

f Auα
k = 1.647226 · 103

A
uς

k = −7.02909 · 103

B
uς

k = −0.07080 · 103

Auα
k = §

A
uς

k = −7.02909 · 103

B
uς

k = −0.07080 · 103

Auα
k = §

A
uς

k = §

B
uς

k = −0.07080 · 103

Auα
k = §

A
uς

k = −0.403358 · 103

B
uς

k = 0.003285 · 103

Auα
k = §

A
uς

k = §

B
uς

k = 0.003285 · 103

Auα
k = §

A
uς

k = −7.02909 · 103

B
uς

k = 0

g Auα
k = 0.662353 · 105

A
uς

k = −0.37616 · 105

B
uς

k = 0.010866 · 105

Auα
k = §

A
uς

k = −0.37616 · 105

B
uς

k = 0.010866 · 105

Auα
k = §

A
uς

k = §

B
uς

k = 0.010866 · 105

Auα
k = §

A
uς

k = 0.00094 · 105

B
uς

k = −0.00018 · 105

Auα
k = §

A
uς

k = §

B
uς

k = −0.00018 · 105

Auα
k = §

A
uς

k = −0.37616 · 105

B
uς

k = 0

h Auα
k = −227.35774

A
uς

k = −11.57605

B
uς

k = −0.13431

Auα
k = §

A
uς

k = −11.57605

B
uς

k = −0.13431

Auα
k = §

A
uς

k = §

B
uς

k = −0.13431

Auα
k = §

A
uς

k = 96.06635

B
uς

k = −0.428702

Auα
k = §

A
uς

k = §

B
uς

k = −0.428702

Auα
k = §

A
uς

k = −11.57605

B
uς

k = 0

i Auα
k = 0.509847

A
uβ

k = −2.681337

A
uς

k = −0.091129

B
uς

k = 0.0426823

Auα
k = §

A
uβ

k = §

A
uς

k = −0.091129

B
uς

k = 0.0426823

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = 0.0426823

Auα
k = §

A
uβ

k = §

A
uς

k = 0.011820

B
uς

k = −0.006574

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = −0.006574

Auα
k = §

A
uβ

k = §

A
uς

k = −0.091129

B
uς

k = 0

j Auα
k = −0.000328

A
uβ

k = 0.0000294

A
uς

k = −0.030146

B
uς

k = −0.048351

Auα
k = §

A
uβ

k = §

A
uς

k = −0.030146

B
uς

k = −0.048351

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = −0.048351

Auα
k = §

A
uβ

k = §

A
uς

k = 0.031073

B
uς

k = −0.047001

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = −0.047001

Auα
k = §

A
uβ

k = §

A
uς

k = −0.030146

B
uς

k = 0

k Auα
k = 3.23840

A
uβ

k = 3.463523

A
uς

k = 0.033849

B
uς

k = −0.002361

Auα
k = §

A
uβ

k = §

A
uς

k = 0.033849

B
uς

k = −0.002361

Auα
k = §

A
uβ

k = §

A
uς

k = §

B
uς

k = −0.002361

Auα
k = §

A
uβ

k = §

A
uς

k = 0.077460

B
uς

k = −0.001113

Auα
k = §

A
uβ

k = §

A
uς

k = 0.077460

B
uς

k = §

Auα
k = §

A
uβ

k = §

A
uς

k = 0.033849

B
uς

k = 0

§: zig-zag amplitudes are calculated as indicated in sect. 2.6.1.
u Zig-zag amplitudes are assumed coincident with those at the first interface from above.
1 Zig-zag amplitudes are assumed coincident with those at the first interface from below.
+ Zig-zag amplitudes B

uς

k are assumed null.

The purpose of this theory is to test whether results with the same accuracy of ZZA and HWZZ can be effectively obtained although 
zig-zag functions are chosen in a different way.

Modified versions of HWZZM are also considered whose amplitudes of zig-zag functions are assumed and then are kept uniform across 
the thickness (see Table 4), in order to clarify the importance of the redefinition of coefficients on accuracy.

2.6.1. Murakami’s like theories
Theories HWZZMA, HWZZMB, HWZZMC, HWZZMB2, HWZZMC2 and HWZZM0 are derived from HWZZM as outlined forward.

– Auα
k (ς), A

uς

k (ς) and B
uς

k (ς) of HWZZMA are assumed uniform and coincident with those of HWZZM at the first interface from below.

Auα
k (ς), and B

uς

k (ς) of HWZZMB are assumed like in HWZZMA while A
uς

k (ς) is calculated like in HWZZM theory.

– For HWZZMC, only B
uς

k (ς) amplitudes are assumed uniform across the thickness and coincident with those at the first interface from 
below. B

uς

k (ς) contributions are neglected for HWZZM0, while Auα
k (ς), A

uς

k (ς) are assumed in the same way of HWZZMB.
– HWZZMB2 and HWZZMC2 theories are similar to HWZZMB and HWZZMC, respectively, but currently amplitudes are assumed coincident 
with those of HWZZM at the first interface from above. With the exception of the parameters explicitly indicated, all the rest remains the 
same as HWZZM.

However, since the amplitudes are not redefined, the results will show that accuracy is lost, therefore they are not convenient even 
though a processing time saving by 10% is obtained.

Anticipating the numerical findings, the most accurate theories of this group will prove to be ZZA, ZZA1, ZZA2, ZZA3, HWZZ and 
HWZZM, being the only ones able to achieve results comparable to those of FEA 3-D for all the examined cases. Because the zig-zag 
functions of HWZZM differ from those of ZZA and HWZZ when, in fact, their results are indistinguishable, there is evidence that the 
choice of such functions is immaterial.
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3. Lower-order theories

Lower-order theories in HW and HR forms are considered in the numerical assessments, which assume either a uniform or a polynomial 
description of the transverse displacement. They are considered for assessing whether and for which application they can be as accurate 
as their higher-order counterparts of section 2.

3.1. MHR, MHR±, MHRO theories

A cubic-quartic mixed zig-zag theory referred as MHR [24], is considered for comparisons which just incorporates Murakami’s zig-zag 
function Mk(ς) as the layerwise function within in-plane displacements:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
Cα(α,β)ς2 + Dα(α,β)ς3]

i + Eα(α,β)Mk(ς) (23)

uς (α,β,ς) = [
w0(α,β)

]
0 + [

a(α,β)ς + b(α,β)ς2 + c(α,β)ς3 + d(α,β)ς4]
i

Coefficients Cα , Dα , a, b, c, d are calculated by enforcing the fulfillment of stress boundaries conditions (14), while terms Eα are calculated 
by enforcing the fulfillment of first and second equilibrium equations (15) at the middle-plane of the laminate. In this case, a unique 
computational layer is assumed across the whole laminate thickness. Because transverse shear and normal stresses cannot be continuous 
at layer interfaces due to the assumptions made, their expressions within the framework of HR variational theorem (2) must be obtained 
integrating local equilibrium equations.

A refined version of MHR, here referred as MHR± is retaken from [29] where the sign of Murakami’s zig-zag function is determined on 
a physical basis, instead of being forced to reverse at interfaces. The correct slope sign is determined at each interface comparing whether 
out-of-plane stresses are more accurate assuming a positive or a negative slope, namely which choice produces the lowest norm of the 
residual force from the three local equilibrium equations.

Another new theory referred as MHRO is considered, whose displacement field is the same of (24) but Eα are assumed as an additional 
d.o.f. Results by MHRO will be only provided for case d, as an example just to show that, despite an additional d.o.f. is considered, no 
advantage is achieved because the same accuracy of MHR is obtained.

3.2. MHR4, MHWZZA, MHWZZA4 and MHR4± theories

The following theories derived from MHR are further considered for comparison purposes. Theory MHR4 [24] is derived assuming the 
following fourth-order through-thickness piecewise variation of the transverse displacement:

uς (α,β,ς) = [
w0(α,β)

]
0 + [

a(α,β)ς + b(α,β)ς2 + c(α,β)ς3 + d(α,β)ς4]
i + e(α,β)Mk(ς) (24)

In this case, e is calculated by enforcing the fulfillment of the third local equilibrium equation at the middle-plane.
A supplementary version of MHR indicated as MHWZZA [24] is considered, which was developed from the HW theorem assuming 

as master displacement-field the same of MHR, the same master strain and master stress fields of HWZZ. In an attempt of improving 
accuracy, ZZA is used as the post-processor.

Another theory used for comparison purposes is MHWZZA4 [24], which was derived from the HW variational statement assuming the 
in-plane displacements by MHR, the transverse displacement by ZZA and as master strain and stress fields those of the HWZZ model. So, 
the only substantial difference of MHWZZA and MHWZZA4 with respect to HWZZ and ZZA is the use of Murakami’s like instead of Di 
Sciuva’s like zig-zag function within a simplified displacement field.

Finally, theory MHR4± derived from MHR4 is considered, where similarly to MHR± the sign of Murakami’s zig-zag function is deter-
mined on a physical basis following the same process described in section 3.1.

3.3. HRZZ and HRZZ4 theory

Another lower order theory used in the numerical applications for comparison purposes is HRZZ [24], which was developed from the 
HR statement (2) postulating a uniform transverse displacement and a cubic zig-zag representation of in-plane displacements:

uα(α,β,ς) = [
u0

α(α,β) + ς
(

0

α(α,β) − w0(α,β),α
)]

0 + [
C i

α(α,β)ς2 + Di
α(α,β)ς3]

i

+
[ ni∑

k=1

�k
α(α,β)(ς − ςk)Hk(ς) +

	∑
k=1

αCk
u(α,β)Hk(ς)

]
c

(25)

uς (α,β,ς) = w0(α,β)

The transverse normal stress σ33 is assumed the same of ZZA model, while transverse shear stresses σi3 are derived from equilibrium 
equations starting from membrane stresses obtained from kinematics. A version of HRZZ indicated as HRZZ PP is particularized, wherein 
the ZZA model is used as the post-processor in order to improve accuracy.

Another theory HRZZ4 is considered for comparison purposes, which assumes a fourth-order polynomial approximation of the trans-
verse displacement as:

uς (α,β,ς) = [
w0(α,β)

]
0 + [

b(α,β)ς + c(α,β)ς2 + d(α,β)ς3 + e(α,β)ς4]
i (26)

and the same stress field of HRZZ (note that εu
33 is no longer null as in HRZZ). This latter theory is aimed at improving accuracy of HRZZ 

when the properties of constituent layers largely vary across the thickness.
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Table 5
Mechanical properties considered in numerical applications.

Elastic moduli Material name

c1 [iso] c2 [iso] i1 i2 mc n [iso] p q r s1 s2 s3 s4

E1 [GPa] – – 6.89 0.1 0.1 – 172.4 0.273 25E2 1 33 25 0.05
E2 [GPa] – – 6.89 0.1 0.1 – 6.89 0.273 E2 1 1 1 0.05
E3 [GPa] M1 M2 6.89 0.1 0.1 M3 6.89 0.273 E2 1 1 1 0.05
G12 [GPa] – – 2.59 0.037 0.04 – 3.45 0.1102 0.5E2 0.2 0.8 0.5 0.0217
G13 [GPa] – – 2.59 0.037 0.04 – 3.45 0.413 0.5E2 0.2 0.8 0.5 0.0217
G23 [GPa] – – 2.59 0.037 0.04 – 1.378 0.413 0.2E2 0.2 0.8 0.5 0.0217
υ12 0.34 0.34 0.33 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 0.25 0.15
υ13 0.34 0.34 0.33 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 0.25 0.15
υ23 0.34 0.34 0.33 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 0.25 0.15

M1 El/Eu = 5/4, El/Ec = 105 M2 El/Eu = 5/4, El/Ec = 104 M3 Eu/El = 1.6, Eu/Ec = 166.66 [iso] = isotropic E1 = E2 = E3 G1 = G2 = G3

Table 6
Processing time [s], including symbolic computations. Calculations made by a laptop computer with quad-core CPU @ 2.60 GHz, 64-bit operating system and 8.00 GB RAM.

Case Cases

d e f g h i h k

Adaptive theories ZZA 13.5620 10.6297 15.0671 15.9719 15.0671 10.5392 10.3465 10.9591
ZZA1 10.9875 6.0213 10.4752 10.8763 10.6351 5.5423 5.9752 5.9741
ZZA2 10.9742 6.0317 10.4875 10.8564 10.6241 5.6574 5.8741 6.0244
ZZA3 10.9657 6.0417 10.4784 10.7419 10.5934 5.5479 5.5369 5.7465
HWZZ 12.0193 6.6997 12.4271 12.8490 12.4271 6.4675 6.5745 6.7755
HWZZM 11.0702 6.1781 11.5344 11.7059 11.5359 5.9675 6.1899 6.2402

HR theories HRZZ 14.9182 11.6926 18.2312 18.2261 18.2312 11.5234 11.6618 12.5887
HRZZ PP 17.1412 13.5781 18.8624 18.1405 18.8624 13.4823 12.0989 13.3635
HRZZ4 14.7821 11.6649 18.2237 18.4891 18.2237 11.8083 11.4963 12.5681
MHR 8.1514 6.5659 6.9574 6.6258 6.9574 6.7454 6.8583 6.6732
MHR4 8.6564 6.4724 6.4946 6.9702 6.4946 6.5908 6.2430 6.5056

HW theories MHWZZA 10.7396 8.2006 7.2359 7.6952 7.2359 8.2660 8.3921 8.6730
MHWZZA4 10.2451 8.6045 7.8365 7.5861 7.8365 8.5094 8.0087 8.9862
HWZZMA 10.9925 6.1642 11.5265 11.6018 11.5267 5.9249 6.0498 6.0951
HWZZMB 11.0215 6.1737 11.5307 11.6289 11.5317 5.9423 6.1003 6.1143
HWZZMC 11.0498 6.1772 11.5314 11.6457 11.5326 5.9543 6.1240 6.1597
HWZZMB2 11.0314 6.1737 11.5310 11.6389 11.5301 5.9472 6.1157 6.1142
HWZZMC2 11.0492 6.1772 11.5317 11.6401 11.5334 5.9498 6.1291 6.1457
HWZZM0 10.9611 6.0856 11.4287 11.5912 11.4873 5.8752 6.0327 6.0475

4. Numerical assessments and discussion

The accuracy of previous theories is assessed considering challenging benchmarks with strong layerwise effects resulting from elastic 
properties, lay-up, loading and boundary conditions.

Benchmarks a to g and i to k are retaken from [24,29], while h is considered for the first time in this paper. Throughout the body of 
numerical results, the reference solutions consist of exact results, whenever available, or FEA 3-D results [50].

Material properties, lay-up, loading and boundary conditions, trial functions, expansion order, FEA-3D meshing, normalizations and 
length-to-thickness ratios considered are reported in Tables 2, 3 and 5 respectively. Symbols *, � and § of Table 2 indicate when Mu-
rakami’s slope rule fails for displacements uα , uβ or uς . Positions where displacements and stresses are reported are explicitly defined in 
Table 3. The processing time required to carry out computation for each case examined is reported in Table 6. It comprises post-processing 
operations carried out for recovering stresses, in the cases where they are applied. In all cases examined, the number of equilibrium points 
considered is equal to 	l · (nu − 1) − 2, where 	l is the number of computational or physical layers and nu is the expansion order of the 
in-plane displacement, (in this paper nu = 3).

4.1. Preliminary tests a to c for assessing the correct implementation of theories

Results of these cases are reported in Tables 7a to 7c. In addition to verify the correct implementation of theories, they also serve to 
ascertain whether there can be a certain diversification of predictions of theories, despite these cases are not particularly demanding.

Displacements and stresses of case a [51] (Table 7a) obtained by “adaptive” theories HWZZ, HWZZM, ZZA1, ZZA2, ZZA3 and ZZA whose 
coefficients are redefined across the thickness prove to be indistinguishable from each other and very close to exact solution.

So it starts to be already demonstrated that the choice of zig-zag functions is immaterial and they can be changed or omitted without 
any loss of accuracy. The results by ZZA3 also starts demonstrating that other functions than power series can be used within adaptive 
theories in order to represent the transverse variation of displacements, without any loss of precision. For this reason from now on, the 
results of adaptive theories will be merged in Figures and Tables. Anyway it should be noticed that present theories obtain very accurate 
results with only five d.o.f., unlike non-physically-based theories in literature. The results reported in Table 7b for case b [22] confirm what 
previously stated, while the results for case c require a detailed discussion. Such case, which is retaken from [19], refers to a sandwich 
beam with a transversally soft lower face (E3 reduced by a factor of 10−2), which is simulated as an eleven layers laminate (five for each 
face and one for the core). Transverse shear stress assume an opposite sign across the faces, which is a very interesting and challenging 
feature to capture. The results for this case reported in Table 7c confirm the absolute equivalence of the adaptive theories and that the 
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Table 7a
Displacements and stresses for the case a. Position is that across the thickness measured from the middle plane (the same applies to the following Tables 7b to 9g).

Theories

Case a Exact [51] FEA 3-D ZZA ZZA1 ZZA2 ZZA3 HWZZ HWZZM

uα −h/2 3.6968 3.6823 3.6944 3.6944 3.6944 3.6946 3.6944 3.6944
uς 0 7.2069 7.2170 7.1981 7.1981 7.1981 7.1985 7.1981 7.1981
σαα −h/2 −58.1420 −58.8002 −58.7972 −58.7972 −58.7972 −58.8026 −58.7972 −58.7972
σας 0 1.9533 1.9588 1.9521 1.9521 1.9521 1.9522 1.9521 1.9521

Table 7b
Displacements and stresses for the case b.

Theories

Case b [22] FEA 3-D ZZA ZZA1 ZZA2 ZZA3 HWZZ HWZZM

uα −h/2 4.5502 4.5539 4.5522 4.5522 4.5522 4.5523 4.5522 4.5522
uς 0 4.6952 4.6964 4.6888 4.6888 4.6888 4.6892 4.6888 4.6888
σαα h/2 30.0280 30.3910 30.3508 30.3508 30.3508 30.3524 30.3508 30.3508

−h/2 −3.8358 −3.8453 −3.8374 −3.8374 −3.8374 −3.8376 −3.8374 −3.8374
σας h/4 2.7061 2.6843 2.7067 2.7067 2.7067 2.7069 2.7067 2.7067

Table 7c
Displacements and stresses for the case c.

Theories

Case c FEA 3-D ZZA ZZA1 ZZA2 ZZA3 HWZZ HWZZM ZZ_NA1 ZZ_NA2

uα up −0.0153 −0.0153 −0.0153 −0.0153 −0.0153 −0.0153 −0.0153 −0.0251 −0.0273
down −0.0026 −0.0026 −0.0026 −0.0026 −0.0026 −0.0026 −0.0026 −0.0107 −0.0130
max 0.0424 0.0426 0.0426 0.0426 0.0426 0.0426 0.0426 0.0312 0.0718
min −0.0153 −0.0152 −0.0152 −0.0152 −0.0152 −0.0152 −0.0152 −0.0251 −0.0273

uς up/max 0.3861 0.3864 0.3864 0.3864 0.3864 0.3864 0.3864 0.6208 0.6625
down −0.0875 −0.0872 −0.0872 −0.0872 −0.0872 −0.0872 −0.0872 −0.2919 −0.3403
min −0.0876 −0.0878 −0.0878 −0.0878 −0.0878 −0.0878 −0.0878 −0.2920 −0.3404

σαα up 0.8734 0.8732 0.8732 0.8732 0.8732 0.8732 0.8732 1.3344 1.4512
down 0.1448 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.5586 0.6795
max 21.4108 21.4011 21.4011 21.4011 21.4011 21.4011 21.4011 32.8438 35.9172
min −16.4857 −16.4760 −16.4760 −16.4760 −16.4760 −16.4760 −16.4760 −27.0462 −29.1637

σας max 5.7005 5.7337 5.7337 5.7337 5.7337 5.7337 5.7337 8.4452 9.4429
min −0.6490 −0.6512 −0.6512 −0.6512 −0.6512 −0.6512 −0.6512 −3.1219 −3.9930

σςς up/max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
min −0.0252 −0.0252 −0.0252 −0.0252 −0.0252 −0.0252 −0.0252 −0.1523 −0.1817

choice of representation and zig-zag functions is immaterial. Vice-versa, the accuracy of the theories that impose only a partial set of 
physical constraints results to be largely dependent upon their choices and highly susceptible to the variation of layer thickness and 
elastic properties assumed.

This becomes evident by comparing the results by non-adaptive theories ZZ_NA1 and ZZ_NA2, where only zig-zag amplitudes are 
recomputed across the thickness. Indeed, the first one, that assume a polynomial representation, shows a superior accuracy than its 
counterpart ZZ_NA2, which uses a combination of sinusoidal, power and exponential functions across the thickness. However, because 
only a partial set of physical constraints is imposed, precision of adaptive theories cannot be obtained, so, their results won’t be reported 
in the following much challenging cases for sake of brevity.

In all cases a to c, the superior efficiency of adaptive theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM is clearly shown by the 
processing time reported in Table 6.

4.2. Case d – cross play laminated beam

A simply supported [0/ − 90/0/ − 90] laminated beam in cylindrical bending under sinusoidal loading is now considered. Retaken from 
[52] and [53], this case is interesting because strong layerwise effects rise as a result of the stacking. Henceforth Tables will show the 
quantities that are not shown in the figures (if any), in order not to present redundant data. In Tables 8a to 8h reporting the results for 
this case, as also forward for the remaining ones, theories MHR, MHR4, MHR± and MHR4± are merged (�) for sake of brevity if not 
explicitly reported, because their results differ by only 3% to 8% each other. In this and following cases, the results of the theories ZZA, 
ZZA1, ZZA2, ZZA3, HWZZ, HWZZM (♠) are grouped together, as their results are practically coincident. This fact must be understood as 
the demonstration that the choice of the representation and zig-zag functions is immaterial for adaptive theories of sections 2.4 to 2.6.

The effects of support reactions is shown in Tables 9a to 9g. To consider this effect, a transverse normal stress σςς (with the magnitude 
specified case by case) is applied at a distance less that 1% of the length away from the supports, because the trigonometric trial functions 
identically vanish at the supports.

Results show that a periodical stack-up not necessarily implies a slope sign reversal at interfaces, contrary to what postulated by 
Murakami’s zig-zag function. Furthermore it is noted that only adaptive theories can accurately predict uα and σας , while all theories 
(except MHR, MHR4, MHWZZA and MHWZZA4 at the first interface from above) quite accurately capture σαα , σςς and uς . Anyway, major 
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errors are committed by HWZZMB and HWZZM0, while MHRO prove in this case to be as accurate as MHR, therefore it doesn’t benefit 
from the extra d.o.f. Results by MHR± and MHR4± show no improvement as regards the accuracy of the transverse displacement, which 
appears the most difficult quantity to determine. HRZZ can’t even predict the average value of this displacement also when post-processed 
by ZZA (results indicated as HRZZ PP).

As regard the effects of supports, (in this case the application of σ−
ςς = −0.1pu

0 ), Table 9a shows that an inappreciable variation of uα

is induced across the thickness, but despite this, the errors committed by lower-order and Murakami’s based theories increases. Instead, 
the effects of support reactions on transverse normal stress is predicted with an excellent agreement by all theories, accordingly is not 
reported.

Adaptive theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM again prove to be the most efficient ones as shown in Table 6. It is noted 
that simplified theories based on Hellinger-Reissner and Hu-Washizu variational theorem neither are accurate, nor can save overall costs 
in this case.

4.3. Case e – simply supported rectangular sandwich plate

A simply supported rectangular sandwich plate under bi-sinusoidal loading is retaken from Brischetto et al. [25], since strong layerwise 
effects rise due to the stiffer and thinner lower face. In this case, the slope of in-plane displacements reverses at the lower interface 
as postulated by Murakami’s zig-zag function, but not at the upper one. This explains why the errors made by plate theories using 
Murakami’s zig-zag function grow up from the bottom to top, as shown in Table 8b. For compensating such errors, a higher degree of 
expansion of the variables would be required (e.g., over the 7-th order [25]). However, it should be noted that the low expansion order 
used for all theories allows adaptive theories to provide already very accurate results.

In details, the results of Table 8b show that no advantages are gotten in this case by MHR± which determined the right slope sign 
because of its still too poor kinematics. Owing to less limiting kinematic assumptions, MHR4 gets better transverse shear stresses than 
MHR4±.

As in all previous cases, adaptive theories achieve the best results and always in perfect agreement with each other, demonstrating 
again that the choice of representation and zig-zag functions is immaterial for them and that the latter can even be explicitly omitted 
without any accuracy loss.

In this case, also all theories with a priori assumed zig-zag functions that are not redefined through imposition of constraints, prove to 
be fairly accurate. However ones of lower order appear inaccurate at some point across the thickness.

All lower order theories using Murakami’s zig-zag function provide an incorrect prediction after the first interface from below (Fig. 1
and Table 9b) when the effects of constraint stresses are considered (σ−

ςς = −0.1pu
0 at supported edges). Moreover, results by theories 

HWZZMA, HRZZ, HRZZ PP, HRZZA4 and MHR and MHR4 are not reported for this case, being too inaccurate.
Also in this case, adaptive theories ZZA1, ZZA2, ZZA3, HWZZ and HWZZM prove to be the most efficient ones (see Table 6).

4.4. Cases f, g and h – Propped cantilever sandwich beams

Currently, a propped-cantilever sandwich beam (clamped at α = 0 and restrained on the lower face at α = Lα ) [24,47] is considered, 
which is loaded by a uniform transverse distributed loading on the upper face. Lower (l) and upper (u) faces are assumed to be tl = c/2
and tu = c/4 thick, respectively, c being the thickness of core. The following ratios of elastic moduli of faces Eu/El = 1.6 and core 
Eu/Ec = 166.6 are assumed (all constituent materials have a Poisson’s ratio υ = 0.3). Initially, the length-to-thickness ratios Lα/h = 5.714
is considered (case f), than a ratio of 20 (case g). Subsequently, the position of the support is moved to α = 0.9Lα with Lα/h = 5.714
(case h). The peculiar characteristic is that for these cases the through-thickness variation of the transverse normal displacement and 
stress need to be very accurately reproduced at the restrained edge, otherwise a wrong transverse shear stress field is predicted. Like 
for case c, another challenging feature is that the transverse shear stress assumes an opposite sign across upper and lower faces at the 
supported edge. This benchmark is also challenging because at the clamped edge the shear force resultant cannot vanish, as erroneously 
predicted by many theories in the literature. Add those interesting features up, this benchmark turns out to be a pretty tough case for 
assessing the accuracy of theoretical models.

4.4.1. Case f
Results by Fig. 2 and Table 8c prove that Murakami’s hypothesis is not valuable. As a direct consequence, MHR and MHR4 erroneously 

predict the through-thickness distribution of displacements and also non-adaptive theories MHWZZA, MHWZZA4, HRZZ, HRZZ PP and 
HRZZ4 cannot be as accurate as adaptive ones. It could be noticed that results by MHR, MHR4, MHR± and MHR4± differ from each other 
by only 3% but they make mistakes up to 180% compared to adaptive theories and to FEA 3-D.

The results of ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM again coincide with each other and are in excellent agreement with FEA 
3-D, confirming that the choice of representation and zig-zag functions is immaterial and that even the latter can be omitted if other 
coefficients can play their role.

Once the effect of the constraint stress are accounted for at the supported edge (σ−
ςς = −5pu

0 ), σας considerably decreases across 
the core and at the lower interface, while constraint stresses have no effects on the in-plane stress distribution (Fig. 3 and Table 9c). It is 
noted that also for this case lower order theories results show a greater dispersion because an imprecise representation of σςς at supports 
undermines their accuracy.

4.4.2. Case g
Fig. 4 and Table 8d show the result for this case highlighting that σςς is strongly asymmetric across the two faces as a consequence of 

different properties and thickness of faces. It is also noted the inaccuracy of MHWZZA and MHWZZA4 compared to adaptive theories ZZA, 
ZZA1, ZZA2, ZZA3, HWZZM and HWZZ, which again show all similar results, confirming that the choice of representation and layerwise 
functions is immaterial for these theories. Anyway, discrepancies are reduced when uα and σας are considered, though lower-order 
theories remain not very accurate. In this case, MHR, MHR4, MHR± and MHR4± differ again from each other by 3% but they make 
mistakes up to 90% compared to adaptive theories and to FEA 3-D. The obvious conclusion is that even for a length-to-thickness ratio of 
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−2.8123 −2.9760 −3.2506 −2.2901
1.2207 1.2524 1.2460 1.3105
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.0701 0.0998 0.0936 0.2973 0.3058

.3645 0.3374 0.3359 0.3076 0.3059

3.1275 12.1368 11.0599 12.1132 10.8221
.8542 −2.2272 −6.7292 −2.0089 −6.9174
18.1194 −12.1321 −11.0971 −12.1352 −11.5095

.7076 5.2939 4.8258 5.2837 4.7225

.3714 −0.9666 −2.9247 −0.8717 −3.0062
7.1591 −5.2727 −4.8377 −5.2741 −5.2350
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18192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

Table 8a
Results for case d; Data � group theories MHR, MHR4, MHR± and MHR4± with errors up to 8%; data ♠ group theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ, HWZZM, which g

Theories

Case d FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 � MHWZZA MHWZZA4 HWZZMB HWZZMC

uα up/min −3.0036 −2.9343 −2.8735 −2.8735 −3.0613 −2.2894 −2.3467 −2.9941 −3.1252 −3.0442
down/max 1.2439 1.2161 1.2228 1.2228 1.3328 1.3072 1.3399 1.2415 1.2221 1.2733

uς up/max 1.6049 1.5955 1.5575 1.6110 1.6030 1.4770 1.5413 1.5792 1.5496 1.6076
x10−3 down 1.5365 1.5281 1.5575 1.5435 1.5355 1.4228 1.4749 1.5129 1.5552 1.5247

min ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 1.5254 ‘’

σαα up 2.5207 2.5832 2.6382 2.6382 2.6263 2.0558 2.4924 2.5645 2.8471 2.6500
down/min −24.9701 −24.9931 −25.3961 −25.3961 −25.9016 −25.7320 −24.0193 −25.0093 −25.3803 −25.0854
max 22.2540 22.3134 22.5404 22.5404 23.2554 21.7952 20.1360 22.8737 26.8990 22.7609

σαα up 2.0079 2.0000 2.0297 2.0297 2.0162 2.0150 1.9910 2.0075 2.0011 2.0051

Table 8b
Results for case e.

Theories

Case e Exact FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 MHR 
MHR±

MHR4 MHR4± MHWZZA MHWZZA4 HWZZMA H

uα up/min −4.0854 −4.0859 −4.0849 −2.6676 −2.6676 −2.6869 −4.1787 −4.1792 −4.8887 −4.1797 −3.5706 −5.3321 −
x10−5 down 0.5793 0.5784 0.5791 1.0646 1.0646 0.9874 0.9437 0.9475 0.8194 0.9486 0.2556 0.7189 0

max 8.6280 8.6274 8.6278 7.4391 7.4391 7.4513 6.4477 6.4503 4.2330 6.4568 8.9052 10.6532 9

uβ up/min – −0.8757 −0.8761 −0.9438 −0.9438 −0.9219 −0.8634 −0.8617 −0.8148 −0.8213 −0.7981 −1.1893 −
x10−3 down – 0.1335 0.1343 0.3857 0.3857 0.3731 0.4365 0.4339 0.1309 0.0599 0.0599 0.1598 0

max - 1.8553 1.8569 1.8470 1.8470 1.8265 0.6721 0.6745 0.7055 2.6592 2.2603 2.3652 2

uς up – 0.3362 0.3369 0.1978 0.3631 0.3624 0.1968 0.2170 0.2920 0.3629 0.3657 0.4290 0
x10−1 down/min – 0.1013 0.1023 0.1978 0.2047 0.2042 0.1985 0.1533 0.2168 0.0039 0.0046 0.1252 0

max – 0.3368 0.3375 0.1978 0.3640 0.3637 0.1986 0.2174 0.2927 0.3634 0.3661 0.4303 0

σαα up/max – 12.1506 12.1429 13.0801 13.0801 13.1203 11.2863 11.2696 11.7698 13.3864 13.4001 10.4368 1
down - −2.3362 −2.3211 −6.6645 −6.6645 −6.6800 −4.5254 −4.5133 −5.8788 −1.0358 −1.2584 −1.7557 0
min – −12.1504 −12.1364 −13.0764 −13.0764 −13.0967 −11.3436 −11.3279 −9.3015 −11.1589 −11.2895 −10.2338 −

σββ up/max – 5.2998 5.2966 5.7040 5.7040 5.6845 4.9606 4.7639 4.9041 4.9677 5.0029 5.2184 5
down - −1.0103 −1.0089 −2.8970 −2.8970 −2.8763 −1.9672 −1.7825 −2.4495 −0.4503 −0.4814 −0.8778 0
min – −5.2918 −5.2746 −5.6846 −5.6846 −5.6537 −6.4924 −6.1957 −3.8756 −4.8491 −4.8763 −5.1169 −

σαβ up/min – −2.5701 −2.5674 −2.7660 −2.7660 −2.7432 −2.3721 −2.3678 −2.4883 −2.4070 −2.3916 −3.4789 −
down - 0.4968 0.4920 1.4128 1.4128 1.3986 0.9594 0.9465 1.2464 0.2196 0.2095 0.5852 1
max - 2.5765 2.5732 2.7719 2.7719 2.7545 1.8192 1.8192 2.2816 2.3662 2.312 3.4113 2

σας max 2.0455 2.1140 2.0659 1.8164 1.8164 1.8204 1.9339 2.0878 2.1317 1.8421 2.0502 2.2800 2

σβς max - 2.7185 2.7184 3.0702 3.0702 3.0327 2.5127 2.5925 2.5925 2.5739 2.6105 3.0295 3
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Table 8c
Results for case f; data � group theories MHR, MHR4, MHR± and MHR4± making similar large errors.

Theories

Case f FEA 3-D ♠ HRZZ 
HRZZ PP

HRZZ4 � MHWZZA MHWZZA4 HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

σαα up −0.5157 −0.5109 −0.3434 −0.3455 0.7151 −0.5038 −0.5046 −0.5314 −0.5247 −0.4701 −0.5314 −0.4884
down/min −1.2875 −1.2840 −1.4654 −1.4705 −1.1662 −1.3803 −1.3963 −1.3354 −1.3187 −1.1813 −1.3354 −1.2276
max 0.9671 0.9681 1.2405 1.2474 0.7151 1.2724 1.2607 1.0068 0.9942 0.8906 1.0068 0.9255

Table 8d
Results for case g; data � group theories MHR, MHR4, MHR± and MHR4± making similar large errors.

Theories

Case g FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 � MHWZZA MHWZZA4 HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uς up 7.7178 7.7177 0 7.4873 7.4874 8.0429 7.6008 7.6008 0.6808 9.1130 1.9626 9.0265 1.9286
x10−3 down/min 0 0 0 0 0 0 0 0 −1.5326 0 −0.3168 0 −0.1776

max 7.7446 7.7499 0 7.4970 7.4934 8.1313 7.6008 7.6203 0.7067 9.1408 1.9868 9.0541 1.9774

σαα up 0.1357 0.1348 0.1106 0.1106 0.1061 0.2579 0.2903 0.2898 0.1350 0.1343 0.1330 0.1347 0.1303
down/min −0.2849 −0.2845 −0.3069 −0.3069 −0.3112 −0.3834 −0.2738 −0.2705 −0.2835 −0.2821 −0.2792 −0.2829 −0.2735
max 0.1357 0.1348 0.1775 0.1775 0.1783 0.2579 0.2903 0.2898 0.1350 0.1343 0.1330 0.1347 0.1303

20 an accurate description of the through-thickness transverse displacement variation uς is still of primary importance, so it is necessary 
to resort to higher-order theories.

Constraint stresses considerably modify the through-thickness distribution of σας across the core and nearby the lower interface 
(Fig. 5), while they don’t cause changes to the in-plane stresses. Again σςς is no longer vanishing at the lower interface, where its 
magnitude is assumed to be σ−

ςς = −5pu
0 . Like for the previous thick case f, a large dispersion of results is shown by lower-order theories, 

therefore their inadequacy is confirmed.

4.4.3. Case h
The results for this case are reported in Table 8e. Again accurate results very close to FEA 3-D ones are obtained by adaptive theories 

ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM, so it is confirmed that the choice of zig-zag is immaterial and that they can be also omitted if 
the procedure of (2.4) is used. In addition, it is confirmed that functions representing the variation of displacements across the thickness 
can be arbitrarily chosen under the same conditions. Lower order theories, in particular ones that incorporate standard Murakami’s zig-zag 
function as layerwise function, appear still inadequate, at least with regards the prediction of uς , σας and σςς .

Regarding the effect of constraint stresses, the application of σ−
ςς = −5pu

0 at the supported edge induces a mutation of the trend of 
transverse shear and normal stresses across the core and across the upper face (Table 9d), which is incorrectly calculated by lower-order 
theories

Adaptive theories ZZA1, ZZA2, ZZA3, HWZZ and HWZZM once again prove to be the most accurate and efficient theories (see Table 6) 
for all cases f, g and h.

4.5. Case i – sandwich with stiff core and damaged lower face

In this case, a sandwich plate having the same geometric characteristics of case e but a much stiffer core and a damaged lower face 
[24] (E1111 E1122 E2222 E1212 are reduced by 2 · 10−1 for Layer 1) is considered. Because of geometric and material asymmetries act jointly 
extolling each other, layerwise effects becomes stronger.

From Table 8f, which shows displacements and stresses predicted by all theories, an appreciable degree of accuracy emerges. However, 
theories based on Murakami’s zig-zag function as the layerwise function turn out to be less accurate, because the slope of in-plane 
displacements reverses at the lower interface but not at the upper one like for case e. Because of this, lower-order theories MHR± and 
MHR4± obtain results similar to those of their counterparts MHR and MHR4, so not benefiting from the physical redefinition of the slope 
sign and also MHWZZA and MHWZZA4 are inaccurate despite having a higher-order kinematics.

The effect of the support reaction, namely the application of σ−
ςς = −0.1pu

0 at the lower face takes place through a sharp rise of σςς

across the core, that doesn’t change uα and uβ whereas it changes considerably transverse shear stresses (Table 9e). The most evident 
effect of this is the increased disagreement among the predictions of lower and higher-order theories.

The accuracy and efficiency (see Table 6) of the adaptive theories are confirmed for this case, along with the possibility of arbitrarily 
choosing representation and zig-zag functions.

4.6. Case j – simply-supported sandwich plate with damaged thick core and face

A modified version of the three-layer, simply-supported sandwich plate under sinusoidal loading formerly considered by Zhen and 
Wanji [52] is now retaken assuming a damaged and thinner lower face (E1111 E1122 E2222 E1212 reduced by 1·10−2) and a thicker core 
(that is partially damaged up to 0.15 h from below, E1122 E2222 E1212 E1313 E2323 are reduced by 2·10−1). Due to such assumptions, this 
case extols the layerwise effects, similarly that in [24]. Transverse shear stresses reported in Table 8g show that the reduction of elastic 
moduli results into a totally different behavior from that of the undamaged case, while mild variations occurs for the other stresses 
and for displacements. Because, only an infinitesimal part of the bending stress is borne by the lower face, transverse shear stresses are 
strongly asymmetric across the thickness. Accordingly, the incorporation of layerwise functions able to accurately represent displacement 
and stress fields and the redefinition of coefficients across the thickness assume a primary importance. As the sign of σβς reverses near 
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12345678910111213141516

ZZA4 HWZZMC HWZZMB2 HWZZMC2

3 6.5241 6.1033 6.5117
10 −8.5017 −8.9046 −8.5017
4 6.5241 6.1033 6.5117

021 −8.5017 −8.9046 −8.5017

1.6345 1.0837 1.6637
1.6345 1.0837 1.6637
0 0 0

04 −0.0680 −0.1063 −0.0712
0.1005 0.1049 0.1017

02 −0.0680 −0.1063 −0.0712

0 0 0
27 −4.4817 −4.0166 −4.6354

1.0000 1.0000 1.0000
‘’ ‘’ ‘’

HWZZMC HWZZMB2 HWZZMC2 HWZZM0

−1.4250 −1.3000 −1.2911 −1.2991
2.2230 2.4569 3.0535 2.4543

−0.4749 −0.4334 −0.4280 −0.4316
0.7443 0.8218 1.0257 0.8383

3.5889 2.4225 3.3502 3.2661
3.3475 2.4515 3.9639 3.2389

65.6971 59.9352 59.5145 59.8889
14.0245 15.4964 19.2775 15.5515

28.5742 26.0725 25.8587 26.0331
28.4933 31.4897 39.1435 31.4861

−13.9184 −12.7001 −12.5776 −12.6695
5.4411 6.0103 7.4860 6.0677

22.3695 20.4425 19.6569 20.4280
−6.9932 −8.1893 −10.2830 −8.1850

7.4550 6.8151 6.5281 6.7946
−2.3197 −2.7203 −3.4008 −2.6599

−0.6882 −0.8281 −1.4545 −0.9251
18192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

Table 8e
Results for case h.

Theories

Case h FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 MHR MHR± MHR4 MHR4± MHWZZA MH

uα up 7.2089 7.2099 0.9979 0.9979 11.0672 6.9440 7.2027 21.2650 17
x10−4 down −10.1752 −10.1700 −13.1971 −13.1971 −8.2691 −16.6906 −16.8561 −16.5921 −9

max 7.2089 7.2099 3.6072 3.6072 11.0672 6.9440 7.2027 23.7786 19
min −10.1752 −10.1700 −13.1971 −13.1971 −8.2691 −16.6906 −16.8561 −18.3875 −1

uς up 1.6990 1.6952 0 1.3130 1.8381 0.8336 1.2080 1.4823 1.1
x10−3 max 1.6990 1.6952 0 1.3130 1.8381 0.8367 1.2100 1.4888 1.1

min 0 0 0 −0.5875 −0.8226 0 0 0 0

σαα up 0.0404 0.0402 0.4626 0.4626 −0.1183 0.1331 −0.2326 0.0679 −0
down/max 0.2127 0.2110 0.5066 0.5066 0.2864 −0.2018 0.2797 0.4976 0.3
min −0.1884 −0.1875 −0.5123 −0.5123 −0.2789 −0.3103 −0.2326 −0.5423 −0

σας max 0.1356 0.1357 2.7216 2.7216 0 0 0 0.3811 0.3
min −5.1900 −5.1900 −7.6069 −7.6069 −5.7321 −2.5806 −2.5338 −8.5986 −8

σςς up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0
max 1.0055 1.0055 1.1162 1.1162 ‘’ ‘’ ‘’ 1.0146 ‘’

Table 8f
Results for case i.

Theories

Case i FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 MHR MHR± MHR4 MHR4± MHWZZA MHWZZA4 HWZZM

uα up −1.4225 −1.4259 −1.2851 −1.2851 −1.2737 −0.7871 −0.8028 −0.9253 −0.9346 −1.2903
x10−2 down/max 3.0175 3.0345 2.7807 2.7807 2.7522 1.0791 1.1007 2.2771 2.3001 2.4946

uβ up −0.4742 −0.4741 −0.4284 −0.4284 −0.4246 −0.2714 −0.2768 −0.3117 −0.3086 −0.4328
x10−2 down/max 1.0059 1.0101 0.9269 0.9269 0.9174 0.3905 0.3983 0.7669 0.7592 0.8314

uς up 3.5705 3.5817 3.5238 3.3125 3.2903 2.4225 1.9379 2.1422 2.1850 3.2446
x10−2 down 3.9477 3.9430 3.5238 3.6207 3.5922 2.4515 2.7060 2.9220 2.9805 3.1867

σαα up/max 65.5801 65.4700 59.2481 59.2481 58.7266 36.6356 37.3683 43.0362 42.6059 59.5049
down 19.0188 19.0374 17.5260 17.5260 17.3462 10.9241 11.1426 14.4979 14.3529 15.7223

σββ up 28.5252 28.5264 25.7727 25.7727 25.5460 16.2212 16.5457 18.6913 18.5044 25.9184
down/max 38.6704 38.6763 35.6350 35.6350 35.2695 16.2723 16.5978 29.4769 29.1822 31.9686

σαβ up/min −13.8956 −13.9000 −12.5533 −12.5533 −12.4427 −7.8211 −7.9775 −9.1325 −9.2238 −12.644
down 7.3693 7.3791 6.7909 6.7909 6.7212 2.1139 2.1562 5.6179 5.6741 6.0917

σας max 22.5907 22.4046 19.7134 19.7134 19.4974 20.3905 22.4648 21.9681 21.9681 20.3015
min −10.4100 −10.1051 −9.3251 −9.3251 −9.2209 −0.3555 −5.1433 −10.2517 −10.2497 −8.4004

σβς max 7.4682 7.4796 6.5711 6.5711 6.4991 6.5250 6.4090 5.3118 5.3649 6.7948
min −3.3684 −3.3567 −3.1084 −3.1084 −3.0736 −0.1138 −1.4673 −2.6080 −2.6341 −2.8006

σςς min −1.1414 −1.1359 −1.0101 −1.0101 −0.9963 −0.0069 −0.3866 −1.5002 −1.4852 −0.9947
17

W

.871
.16

.974
0.7

463
551

.15
945
.44

988
.52

000

B

4
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0.9731 1.0388 0.8940 1.0451
0.9287 0.8964 0.8427 0.9042

33.3650 35.3858 23.5493 35.5898
0.5587 0.7144 1.6309 0.7188

2.2457 1.9630 1.7309 1.9713
2.7553 3.6340 2.9191 3.6468

−1.6018 −1.4960 −1.2043 −1.5032
0.2122 0.2797 0.2333 0.2807

11.8110 12.1571 11.2785 12.2440
−0.0951 −0.2832 −0.2744 −0.2784

2.1697 2.0520 1.3254 1.2852
−1.6823 −1.2632 −1.2818 −2.0547
−0.0008 −0.0105 −0.0067 −0.0101

HWZZMC HWZZMB2 HWZZMC2 HWZZM0

−2.1903 −2.3112 −2.2700 −2.3556
3.2180 2.9162 3.0627 1.9739

3.7750 3.8088 3.7484 3.2561
3.1317 3.7892 3.2986 3.2552
3.7813 3.8148 3.7546 3.2619

1.3914 1.3936 1.4064 1.3752
−1.5756 −1.5232 −1.5623 −1.0658

−0.3631 −0.3482 −0.3598 −0.3334
0.3363 0.3509 0.3504 0.2543
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Table 8g
Results for case j.

Theories

Case j FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 MHR MHR4 MHR± MHR4± MHWZZA MHWZZA4

uα up/min −0.3828 −0.3866 −0.3848 −0.3848 −0.3689 −0.3702 −0.3753 −0.3296 −0.3304 −0.3834 −0.3828
x10−2 down/max 4.6261 4.6723 4.8664 4.8664 4.5824 4.7763 4.9984 4.1652 3.9997 4.6581 4.6412

uβ up/min −0.0443 −0.0444 −0.0441 −0.0441 −0.0430 −0.0546 −0.0541 −0.0518 −0.0508 −0.0429 −0.0439
x10−1 down/max 1.0694 1.0712 1.0981 1.0981 1.0499 0.7801 0.7865 0.7420 0.7045 1.0772 1.0726

uς up 0.9619 0.9613 0.9683 0.9655 0.9677 0.0927 0.0930 0.9431 0.9556 0.9649 0.9618
x10−1 down/min 0.8307 0.8306 0.9683 0.8312 0.8113 0.7956 0.7649 0.8103 0.7508 0.8332 0.8308

σαα up/max 32.8699 32.8733 33.0394 33.0394 31.6808 31.9053 32.3405 35.4284 35.5056 32.9073 32.8665
down 0.6546 0.6512 0.6156 0.6156 0.6234 −0.2182 −0.3109 −0.5368 −0.5376 0.6628 0.6585

σββ up 1.8425 1.8367 1.8369 1.8369 1.7880 2.1963 2.1852 2.1387 2.1065 1.7960 1.8299
down/max 3.3715 3.3631 3.4948 3.4948 3.3219 2.8462 2.9200 2.8904 2.7598 3.3974 3.3838

σαβ up/min −1.3986 −1.4076 −1.3983 −1.3983 −1.3537 −1.5513 −1.5524 −1.5757 −1.5609 −1.3761 −1.3923
down 0.2595 0.2573 0.2684 0.2684 0.2555 0.2130 0.2178 0.2138 0.2040 0.2179 0.2180

σας max 11.1897 11.1938 10.8151 10.8151 10.9233 10.1734 9.7946 10.2751 10.0958 10.6435 11.1353
min −0.2687 −0.2697 −0.4964 −0.4964 −0.5014 0 0 0 0 −0.1740 −0.9738

σβς max 1.1471 1.1381 1.1243 1.1243 0.9280 1.6464 1.5236 1.5425 1.3516 1.1096 1.1430
min −1.9038 −1.9038 −1.9937 −1.9937 −1.9431 −1.6117 −1.6532 −1.6381 −1.5689 −1.9259 −1.9181

σςς min −0.3524 −0.3530 −0.3253 −0.3253 −0.2348 −0.0860 −0.0795 −0.0666 −0.0630 −0.3509 −0.3501

Table 8h
Results for case k.

Theories

Case k FEA 3-D ♠ HRZZ HRZZ PP HRZZ4 MHR MHR± MHR4 MHR4± MHWZZA MHWZZA4 HWZZMB

uα, uβ up/min −2.2761 −2.2728 −2.3900 −2.3900 −2.4562 −2.4379 −2.4282 −0.7415 −0.7341 −2.5117
x10−3 down/max 2.6229 2.6189 2.7929 2.7929 2.7623 2.2598 2.2417 3.2909 3.2580 2.7904

up 3.9097 3.9083 3.4482 3.8811 3.8802 3.4655 1.3704 2.9731 3.0326 3.5052
uς down/min 3.5811 3.5819 3.4482 3.5326 3.5338 3.4489 0.9300 2.5671 2.6184 3.4224
x10−2 max 3.9142 3.9120 3.4482 3.8864 3.8857 3.4748 1.3778 2.9737 3.0332 3.5112

σαα, σββ up/max 1.3294 1.3326 1.2748 1.2748 1.3090 1.2996 1.5583 1.4536 1.4623 1.4360
down/min −1.5510 −1.5605 −1.4437 −1.4437 −1.4279 −1.1681 −1.1422 −1.6959 −1.7061 −1.4921

σαβ up/min −0.2805 −0.2808 −0.3111 −0.3111 −0.3198 −0.3174 −0.3567 −0.3647 −0.3683 −0.3422
down/max 0.3168 0.3168 0.3636 0.3636 0.3596 0.2942 0.2859 0.4119 0.4160 0.3525
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Fig. 1. Case e: Simply supported rectangular sandwich plate (Lα/h = 4, Lβ/Lα = 3) under a bisinusoidal loading applied on the top layer considering the effects of support 
reactions.
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Table 9a
Results for case d – with support reaction; ♠ ZZA, ZZA1, ZZA2, ZZA3, HWZZ, HWZZM, coincident results.

Theories

Case d FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uα up/min −3.0069 −2.9857 −3.1698 −3.8699 −2.8732 −3.0673 −3.2186 −3.2972 −2.8802 −3.1961 −2.9075
down/max 1.3868 1.3977 1.2477 1.3531 1.1323 1.2296 1.4686 1.4759 1.2182 1.4493 1.3226

σας max 2.0596 2.0571 2.1065 2.1584 2.0978 2.0943 2.2695 2.2919 1.9520 2.2717 2.0733

Table 9b
Results for case e – with support reaction.

Theories

Case e FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uα up/min −3.6000 −3.6099 0.8988 −3.2460 −8.5408 −7.2316 −3.9382 −4.0447 −3.8085 −4.2308 −3.7886
x10−5 down 0.5789 0.5731 −0.0387 −0.0121 7.3054 5.8687 1.8905 0.6141 1.9420 0.6959 1.9459

max 8.1439 8.1465 6.2363 8.0957 7.3054 5.8687 3.8395 8.3408 3.8842 8.6421 3.8969

σβς max 2.7161 2.7167 2.5739 2.5739 1.8468 1.5700 2.3857 2.7134 2.4645 2.7135 2.4900

Table 9c
Results for case f – with support reaction.

Theories

Case f FEA 3-D ♠ HWZZ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uα up 0.7593 0.7523 0.7524 3.4949 3.5648 0.5081 0.4110 0.7060 0.7478 0.6185 0.7446 0.6597
x10−3 down −1.8370 −1.8346 −1.8348 −2.3827 −2.4304 −0.7616 −0.6161 −1.7215 −1.8234 −1.5082 −1.8158 −1.6086

max 1.1156 1.1156 1.1157 3.4949 3.5648 1.8274 1.4781 1.0469 1.1088 0.9171 1.1042 0.9782
min −1.8370 −1.8346 −1.8348 −2.3827 −2.4304 −2.0502 −1.6584 −1.7215 −1.8234 −1.5082 −1.8158 −1.6086

Table 9d
Results for case h – with support reaction.

Theories

Case h FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMC HWZZMB2 HWZZMC2

uα up 7.8480 7.8480 21.7754 17.1564 7.1315 7.3036 6.4327 6.0362 6.3880
x10−4 down −10.7238 −10.7431 −16.9903 −8.7945 −17.1413 −17.0921 −8.3827 −8.8067 −8.3402

max 7.8480 7.8480 24.3493 19.1754 7.1315 7.3036 6.4327 6.0362 6.3880
min −10.7238 −10.7431 −18.8288 −10.2740 −17.1413 −17.0921 −8.3827 −8.8067 −8.3402

σας max 0.2881 0.2882 1.3648 0.3313 0 0 0 0 0
min −5.1540 −5.1702 −8.8055 −8.2333 −2.6503 −2.5705 −4.4190 −3.9742 −4.5496

σςς max 1.0580 1.0581 1.3576 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9e
Results for case i – with support reaction.

Theories

Case i FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uα up −1.1759 −1.1757 −1.2443 −1.2634 −2.1116 −2.4988 −1.3408 −1.4566 −1.3479 −1.3328 −1.3545
x10−2 down/min 3.5337 3.5304 2.7249 2.6477 1.7136 −2.0539 2.5877 2.1695 2.4441 3.0547 2.4648

min −3.7376 −3.7374 −2.9052 −2.9369 −2.1116 −9.6905 −2.6303 −3.0659 −2.7200 −3.3067 −2.7414

uβ up −0.3897 −0.3898 −0.4977 −0.5054 −0.7176 −0.8014 −0.4473 −0.4859 −0.4497 −0.4437 −0.4519
x10−2 down/max 1.1795 1.1775 1.0900 1.0591 0.5931 −0.7475 0.8621 0.7135 0.8129 1.0169 0.8197

min −1.2444 −1.2449 −1.1621 −1.1748 −0.7176 −3.2920 −0.8773 −1.0316 −0.9085 −1.1036 −0.9157

σας max 16.3209 16.3762 22.7094 21.7916 9.3027 8.8559 20.6429 22.3609 20.7514 19.8125 20.8607
min −11.8300 −11.6960 −9.9516 −10.3215 0.0000 0.0000 −8.4423 −6.5053 −8.2366 −10.4128 −8.2800

σβς max 5.4438 5.4406 8.1223 8.4631 3.1401 2.8886 6.8883 7.4608 6.6014 6.9245 6.9610
min −3.8950 −3.8984 −3.6242 −3.4967 0.0000 0.0000 −2.8171 −2.2016 −3.4771 −2.7531 −2.7675

σςς min −0.3639 −0.3692 −0.2210 −0.2210 −0.1000 −0.1000 −0.1954 −0.1527 −0.1896 −0.2426 −0.1894

the lower face and that of σζζ exhibits a through-thickness change, capturing these stress fields is rather challenging. For this reason, 
strong discrepancies appear between the predictions of the lower-order theories. Because Murakami’s rule of a reversing slope at material 
interfaces fails, theories using Murakami’s zig-zag functions fail to be accurate. In this case, quite accurate results for σας are provided by 
HWZZMB, HWZZMB2, HWZZMC, HWZZMC2, while HWZZMA and HWZZM0 cannot be equally effective. Also in this case it is confirmed 
that zig-zag functions can be arbitrarily chosen or even omitted and that also the representation can be arbitrarily chosen without any 
loss of accuracy.
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Table 9f
Results for case j – with support reaction.

Theories

Case j FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2

uα up/min −0.3914 −0.3914 −0.5230 −0.3477 −0.3325 −0.3298 −0.2653 −0.3295 −0.3065 −0.3295
x10−2 down/max 4.9514 4.9513 4.2420 4.6688 4.5997 4.6120 2.5716 3.7772 2.9749 3.7915

uβ up/min −0.0451 −0.0451 0.0970 −0.0078 −0.0416 −0.0419 −0.0416 −0.0384 −0.0233 −0.0416
x10−1 down/max 1.1409 1.1428 0.9030 1.0922 0.6770 0.6885 0.8688 0.6018 0.5878 0.8723

σας max 10.5784 10.5715 10.7787 10.7787 9.8716 9.7930 7.9505 9.8004 7.5349 9.7887
min −0.3540 −0.3545 0 0 0 0 −0.0534 −0.0838 −0.1594 −0.0822

σβς max 1.3089 1.3078 1.5140 1.5140 1.1413 1.1375 −0.8593 −1.4083 0.6000 1.3672
min −2.1055 −2.1066 −2.0737 −2.0737 −1.4485 −1.4626 1.0911 1.3756 −1.1206 −1.4205

σςς min −0.1389 −0.1383 −0.1141 −0.1087 −0.1079 −0.1080 −0.1019 −0.1046 −0.1000 −0.1047

Table 9g
Results for case k – with support reaction.

Theories

Case k FEA 3-D ♠ MHWZZA MHWZZA4 MHR± MHR4± HWZZMB HWZZMC HWZZMB2 HWZZMC2 HWZZM0

uα , uβ up/min −2.5495 −2.5435 −0.5455 −0.8797 −3.1143 −0.3533 −2.3844 −2.4250 −2.6578 −2.2822 −2.6864
x10−3 down/max 2.8374 2.8381 3.3057 3.4821 3.1896 3.1504 2.9450 2.7453 2.6614 2.6944 2.6725

Fig. 2. Case f: Propped-cantilever sandwich beam (Lα/h = 5.714) under a uniform loading on the top layer.

Unlike for the previous cases, the effect of constraint stresses (σ−
ςς = −0.1pu

0 ) does not change significantly the through-thickness 
distribution of transverse shear stresses and in-plane displacements (Table 9f). Also in this case adaptive theories ZZA1, ZZA2, ZZA3, HWZZ 
and HWZZM appear as the most efficient theories as shown by Table 6, since they have a high accuracy and low computational costs.
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Fig. 3. Case f: Propped-cantilever sandwich beam (Lα/h = 5.714) under a uniform loading on the top layer considering the effects of support reactions.

Fig. 4. Case g: Propped-cantilever sandwich beam (Lα/h = 20) under a uniform loading on the top layer.
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Fig. 5. Case g: Propped-cantilever sandwich beam (Lα/h = 20) under a uniform loading on the top layer considering the effects of support reactions.

Fig. 6. Case k: Simply supported square sandwich plate (Lα/h = 4) subjected to a local uniform loading on the top layer applied in Lα/4 ≤ α ≤ 3Lα/4, Lβ/4 ≤ β ≤ 3Lβ/4.

4.7. Case k – sandwich plate with thin faces

As last case, a simply-supported sandwich plate with thin faces is considered, which is undergoing a uniform locally applied load at the 
center of its upper face (load from α = Lα/4 to α = 3Lα/4 and from β = Lβ/4 to β = 3Lβ/4) [24]. All constituent materials are assumed 
to be isotropic. Fig. 6 and Table 8h show the through-thickness distribution of displacements and stresses for this case. Structure and 
loading being symmetric, it occurs that σαξ = σβς , σαα = σββ , uα = uβ on the respective sides. For this case, results by MHR, MHR±, 
MHWZZA, MHWZZA4, HWZZMB and HWZZMB2 are merged together in Fig. 6, for sake of brevity, because their findings are very similar. 
Adaptive theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM as well as theories HWZZMB and HWZZMB2 prove to accurately predict all 
through-thickness stress and displacement fields.

Although a better agreement among the predictions of lower order theories is shown than in the previous cases, lower order theories 
still appear rather inaccurate. MHR4 misestimates the magnitude of displacements and stresses, due to the incorrect representation of the 
slope sign variation at interfaces. However, accuracy does not increase for MHR4±, as a consequence of their still too poor kinematics. 
Instead, transverse shear stress is quite accurately predicted by MHR and MHR±. HWZZMA is inaccurate because the recalculation of 
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Fig. 7. Case k: Simply supported square sandwich plate (Lα/h = 4) subjected to a local uniform loading on the top layer applied in Lα/4 ≤ α ≤ 3Lα/4, Lβ/4 ≤ β ≤ 3Lβ/4
considering the effects of support reactions.

zig-zag amplitudes at each interface is omitted. From this fact and given the high accuracy of adaptive theories is proven again that the 
choice of zig-zag functions is immaterial and moreover that any function can be used in order to express transverse displacements without 
any loss of accuracy only for adaptive theories.

Here again the support reaction (σ−
ςς = −0.02pu

0 ) leaves unchanged displacements and in-plane stresses, while it considerably changes 
the transverse shear stresses across the thickness (Fig. 7 and Table 9g). In this case, HWZZMC2, MHWZZA and MHWZZA4 give results that 
are in very good agreement with HWZZ, ZZA, ZZA1, ZZA2, ZZA3, HWZZ. On the contrary HWZZMB, HWZZMB2, HWZZMC and HWZZM0 
provide inaccurate results. Results by HRZZ, HRZZPP, HRZZA4, MHR and MHR4 are again to poor, so they are not reported in Fig. 7.

Adaptive theories ZZA1, ZZA2, ZZA3, HWZZ and HWZZM prove to be the most efficient ones also for this case (see Table 6).

5. Concluding remarks

Accuracy of various theories, some of which are new while others are retaken from previous papers by the authors, have been assessed. 
They derive from the ZZA 3-D zig-zag theory [26] under steadily growing limiting assumptions on displacement, strain and stress fields. As 
they differ by the choice of through-thickness functions representing variables and of zig-zag layerwise functions, the aim of the present 
study is to demonstrate numerically that the choice of such functions can be immaterial whenever their coefficients are recomputed across 
the thickness by enforcing the same whole set of constraint conditions (e.g., stress compatibility at interfaces, stress boundary conditions 
and fulfillment of local equilibrium equations), provided that their expressions are obtained in exact form via symbolic calculus.

As the symbolic calculus tool used finds once and for all closed-form expressions of coefficients, it constitutes an automatic support that 
enables users to choose the coarse representation and the zig-zag functions as desired. Its use enables a variable-kinematic representation 
while keeping fixed the number of functional d.o.f., here assumed coinciding with the classical five middle-plane displacements and 
rotations of the normal (but any other combination could be used).

Challenging benchmarks with strong layerwise effects, where an accurate description of the normal transverse deformation is required, 
are considered for testing theories. They present a quite large variation of mechanical properties of constituent layers, a low length-to 
thickness ratio (but results for rather slender cases are also presented), different lay-ups, loadings and simply-supported or clamped edges 
(in the first case also the effects of support stresses are considered).

Closed form solutions to elastostatic problems considered are obtained using the same trial functions and the same type and order 
of expansion of the in-plane representation for all theories, to compare them under the same conditions. As regards the representation 
across the thickness, the expansion order is limited to the third-order for the in-plane displacements and to the fourth-order for the 
transverse one. This because the redefinition of coefficients makes superfluous use of higher orders, fact that makes the present theories 
very efficient.

The numerical results prove the thesis of this paper and precisely that that if all the physically admissible constraint conditions are 
enforced, theories with different zig-zag functions lead to the same results.

The same holds as regards the choice of the representation functions. So the choice of the functions used to represent variables across 
the thickness and of zig-zag functions can be arbitrary assumed without the results showing inaccuracies. Zig-zag functions can even 
be omitted when a number of unknown coefficients equal to the number of zig-zag amplitudes is incorporated, whose expressions are 
determined by enforcing the fulfillment of interfacial stress compatibility conditions.

Vice-versa, the accuracy of the theories that impose only a partial set of physical constraints are largely dependent upon the choice of 
the aforementioned parameters, the accuracy of results being highly susceptible to the variation of layer thickness and elastic properties 
assumed.

Theories based on Murakami’s like zig-zag function as the layerwise function appear less accurate than physically-based counterparts 
with the same order of expansion across the thickness, as in many of the cases considered the slope of displacements doesn’t always 
reverse at interfaces.

Numerical results show unequivocally that more accurate predictions of through-thickness displacement and stress fields are achieved 
by the theories incorporating a piecewise zig-zag variation of the transverse displacement. Physically-based theories of this paper get 
through-thickness displacement and stress fields as accurately as theories by other researchers, which assume an order of expansion of 
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the variables across the thickness much higher. A simplified uniform or polynomial representation of the transverse displacement is shown 
ineffective even when strain and stress fields retaken from more accurate models are incorporated into mixed theories.

The previous considerations remain valid even when slender cases are considered, because although transverse normal deformability 
effects are no longer dominant, the shortcomings of lower-order theories are magnified by the increased magnitude of deflection.

The support reaction σςς could change considerably the through-thickness filed of transverse shear stresses even when having a small 
magnitude, while it leaves virtually unchanged in-plane stresses and displacements.
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Appendix A. Symbolic calculus tool

Here, the steps for constructing the structural model is discussed. Note that the procedure is valid irrespective of the theory because 
the only thing that sets apart theories is the formulation of the displacement field starting from which the calculation proceeds auto-
matically according to the instructions given below. The process is completely automatic and allows the user to choose the functions of 
representation and zigzag functions, as well as loadings at will, always obtaining an exact formulation of the model coefficients. In this 
framework, every sort of theory can be developed including those with only partial satisfaction of constraints. This allows users to com-
pare many theories and understand which ones are advantageous. Program is developed under MathWorks-CAMPUS WIDE (Politecnico di 
Torino).

%% CREATION OF SYMBOLIC VARIABLES (example refers to a beam)
for i = 1:M %M is the number of terms of in-plane expansion

vettAmn(i) = sym(strcat(‘Amn_’ ,num2str( i )),‘real’);
vettCmn(i) = sym(strcat(‘Cmn_’,num2str(i)),‘real’);
vettDmn(i) = sym(strcat(‘Dmn_’,num2str(i)),‘real’);

end
dofRR=[vettAmn,vettCmn,vettDmn]’;
%example for a beam
p0u = sym(‘p0u’,‘real’); %symbolic loading pu

0
z = sym(‘z’ , ‘real’); %transverse coordinate ς
x = sym(‘x’,‘real’); %in-plane coordinate α
. . .

. . . %(This apply for all variables)

. . .

end
end

end
% u = uα w = uς

%%% USER

This is the only things that user must specify, which is the only thing that characterizes theories

% Next steps are carried out automatically

%% CONSTRUCTION OF STRAIN AND STRESS FIELDS
%diff: Differentiate symbolic expression or function respect the indicate variable
epsx = diff(u,x); % epsx = εαα

. . .

epsz = diff(w,z); % epsz = εςς

. . .

epsxz= diff(u,z)+diff(w,x); % epsxz = εας

for i = 1:nl
mia_Q = Q(:,:,i);
epsilon = [epsx(i). . . ]’;
sigmax(i) = (mia_Q(1,:)*epsilon)’; % sigmax = σαα sigmaxz = σας sigmaz = σςς

. . .

end

%% ENFORCEMENT OF PHYSICAL CONSTRAINTS
%e.g. sigmaxz = 0 at upper and lower layers
%posxz_x: definition of in-plane position where constraint is imposed (numerical variable)
cont = 1; %counter
sigmaxzL = sigmaxz(1);
F(cont,1) = sigmaxzL; %equivalent to imposition of sigmaxzL = 0;
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F(cont,1) = subs(F(cont,1),x,posxz_x);
F(cont,1) = subs(F(cont,1),z,−0.5*h);
cont = cont+1;

sigmaxzU = sigmaxz(nl);
F(cont,1) = F(cont,1)+sigmaxzU;
F(cont,1) = subs(F(cont,1),x,posxz_x);
F(cont,1) = subs(F(cont,1),z ,+0.5*h);
cont = cont + 1;
%Repeat for other constraints
%F will contain all the boundary, compatibility and equilibrium equations

%% CALCULATION OF COEFFICIENTS BY CONSTRAINTS
%Cost_sist contains the coefficients that are calculated by imposing the fulfillment of conditions F
%The number and which coefficients are contained in Cost_sist is chosen by user.
%Number of equations of F must be the same of Cost_sist
F = subs(vpa(F),p0u,p0u_num); %p0u_num is the numerical value of load
solut = vpasolve(F,Cost_sist);

Actually the displacement field is completely defined, by substituting back expressions solut.

Procedure continues building the functional. The example refers to Total potential energy functional.
%% SOLUTION BY RR METHOD
%TOT_POT: total potential energy
%Symbolic integration may be carried out by int function, but a
%numerical approach is equally accurate and requires a lower effort.
%dofRR contains the remaining unknown amplitudes that are not yet
%determined by solving the previous system of equations F.

cont = 1;
for i = 1:length(dofRR)

F2(cont,1) = diff({TOT_POT},dofRR(i));
cont = cont + 1;

end
F2 = subs(vpa(F2),p0u,p0u_num);
soluz = vpasolve(F2,dofRR);

The problem is solved and the results can be plotted.
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